Chứng minh biểu thức sau có giá trị không âm:
B= 4x^2+ 4x+ 2007
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. M = 9 - 6x + x2
= ( 3 - x )2\(\ge\)0\(\forall\)x
=> Đpcm
b. B = 4x2 + 4x + 2007
= 4x2 + 4x + 1 + 2006
= 4 ( x +\(\frac{1}{2}\))2 + 2006\(\ge\)2006\(\forall\)x
=> Đpcm
M = 9 - 6x + x2
= ( 3 - x )2 ≥ 0 ∀ x ( đpcm )
B = 4x2 + 4x + 2007
= ( 4x2 + 4x + 1 ) + 2006
= ( 2x + 1 )2 + 2006 ≥ 2006 > 0 ∀ x ( đpcm )
\(B=-2x^2+4x-5\)
\(=-2\left(x^2-2x+\frac{5}{2}\right)\)
\(=-2\left(x^2-2x+1+\frac{3}{2}\right)\)
\(=-2\left[\left(x-1\right)^2+\frac{3}{2}\right]\)
\(=-2\left[\left(x-1\right)^2\right]-3\le3< 0\forall x\)
\(B=-2x^2+4x-5\)
\(B=-2\left(x^2-2x+\frac{5}{2}\right)\)
\(B=-2\left(x^2-2x+1+\frac{3}{2}\right)\)
\(B=-2\left[\left(x-1\right)^2+\frac{3}{2}\right]\)
\(B=-2\left(x-1\right)^2-3\)
Mà \(\hept{\begin{cases}-2\left(x-1\right)^2\le0\forall x\\-3< 0\end{cases}\Rightarrow B< 0\forall x}\)
chứng minh các biểu thức sau luôn có giá trị âm với mọi giá trị của biến
a)E=12x-4x^2-11 b)F=x-x^2-1
a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)
\(=3x^2-4x-26-4x^2+16\)
\(=-x^2-4x-10\)
\(B=\left(2x\right)^2+2x.2+1+2006\)
\(=\left(2x+1\right)^2+2006\)
Vì \(\left(2x+1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(2x+1\right)^2+2006\ge0+2006;\forall x\)
Hay \(B\ge2006>0;\forall x\)