K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

Ta có : |x + 15| \(\ge0\forall x\)

           |8 - y| \(\ge0\forall x\)

Nên C = |x + 15| +  |8 - y| \(\ge0\forall x\)

Vậy Cmin là 0 khi x = -15 và y = 8

a: \(P\in Z\)

=>căn x+2-2 chia hết cho căn x+2

=>căn x+2 thuộc Ư(-2)

=>căn x+2=2

=>x=0

b: \(P=\dfrac{\sqrt{x}+2-2}{\sqrt{x}+2}=1-\dfrac{2}{\sqrt{x}+2}\)

căn x+2>=2

=>2/căn x+2<=1

=>-2/căn x+2>=-1

=>P>=0

Dấu = xảy ra khi x=0

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

12 tháng 6 2019

Ta có:

\(A=3.1.\sqrt{2x-1}+x\sqrt{5-4x^2}\)

Áp dụng bất đẳng thức Cô-si cho các cặp số \(1,\sqrt{2x-1}\)và \(x,\sqrt{5-4x^2}\)không âm, ta có:

\(A=3.1.\sqrt{2x-1}+x\sqrt{5-4x^2}\le3.\frac{1+2x-1}{2}+\frac{x^2+5-4x^2}{2}=\frac{-3x^2+6x+5}{2}\)

\(=-\frac{3}{2}.\left(x^2-2x-\frac{5}{3}\right)=-\frac{3}{2}\left(x^2-2x+1\right)+4=-\frac{3}{2}\left(x-1\right)^2+4\le4\)

" =" xảy ra <=> \(\hept{\begin{cases}1=\sqrt{2x-1}\\x=\sqrt{5-4x^2}\\\left(x-1\right)^2=0\end{cases}}\Leftrightarrow x=1\)thỏa mãn

Vậy maxA=4 khi và chỉ khi x=1

1 tháng 7 2019

Lời giải :

a) \(A=3\sqrt{x-1}+7\ge7\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

b) \(B=\frac{4}{\sqrt{x}+3}\le\frac{4}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

c) \(C=\frac{3\sqrt{x}+8}{\sqrt{x}+3}=\frac{3\left(\sqrt{x}+3\right)-1}{\sqrt{x}+3}=3-\frac{1}{\sqrt{x}+3}\)

Có \(\frac{1}{\sqrt{x}+3}\le\frac{1}{3}\forall x\)

\(\Leftrightarrow-\frac{1}{\sqrt{x}+3}\ge\frac{-1}{3}\)

\(\Leftrightarrow3-\frac{1}{\sqrt{x}+3}\ge3-\frac{1}{3}=\frac{8}{3}\)

\(\Leftrightarrow C\ge\frac{8}{3}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

d) \(D=x-3\sqrt{x}+2\)

\(D=\left(\sqrt{x}\right)^2-2\cdot\sqrt{x}\cdot\frac{3}{2}+\frac{9}{4}-\frac{1}{4}\)

\(D=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\)

e) \(E=\frac{4}{x-2\sqrt{x}+3}=\frac{4}{\left(\sqrt{x}-1\right)^2+2}\le\frac{4}{2}=2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)

1 tháng 7 2019

a) Vì \(3\sqrt{x-1}\ge0\forall x\ge1\) 

 \(\Rightarrow3\sqrt{x-1}+7\ge7\forall x\ge1\) 

Dấu "=" xảy ra <=>\(3\sqrt{x-1}=0\Leftrightarrow\sqrt{x-1}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\) 

Vậy Amin =7 tại x=1

24 tháng 12 2017

Áp dụng bđt svacxơ, ta có

\(A\ge\frac{4}{x+\sqrt{xy}}\)

mà \(\sqrt{xy}\le\frac{x+y}{2}\Rightarrow x+\sqrt{xy}\le\frac{3}{2}x+\frac{1}{2}y=\frac{1}{2}\)

=> \(A\ge\frac{1}{8}\)

dấu = xảy ra <=> x=y=1/4

nguồn :Quân Minh

25 tháng 12 2017

nhok cho chị mượn chỗ lát

Áp dụng bđt bu nhi a ta có \(\left(2x^2+3xy+4y^2\right)\left(2+3+4\right)\ge\left(2x+3.\sqrt{xy}+4y\right)^2\)