cho a,b,c >0
cm\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
\(\sqrt{\left(a+c\right)\left(b+d\right)}>\sqrt{ab}+\sqrt{cd}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
\(VT=\frac{ab+bc+ca}{ab}+\frac{ab+bc+ca}{bc}+\frac{ab+bc+ca}{ca}\)
\(=3+\frac{c\left(a+b\right)}{ab}+\frac{a\left(b+c\right)}{bc}+\frac{b\left(c+a\right)}{ca}\)(1)
Theo BĐT AM-GM: \(\frac{1}{2}\left[\frac{c\left(a+b\right)}{ab}+\frac{a\left(b+c\right)}{bc}\right]\ge\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{b^2}}\)
Tương tự: \(\frac{1}{2}\left[\frac{a\left(b+c\right)}{bc}+\frac{b\left(c+a\right)}{ca}\right]\ge\sqrt{\frac{\left(a+c\right)\left(b+c\right)}{c^2}}\)
\(\frac{1}{2}\left[\frac{c\left(a+b\right)}{ab}+\frac{b\left(c+a\right)}{ca}\right]\ge\sqrt{\frac{\left(a+c\right)\left(a+b\right)}{a^2}}\)
Cộng theo vế 3 BĐT trên rồi thay vào 1 ta sẽ thu được đpcm.
Do a + b + c = 1 nên \(\frac{\sqrt{\left(a+bc\right)\left(b+ca\right)}}{\sqrt{c+ab}}=\frac{\sqrt{\left[a\left(a+b+c\right)+bc\right]\left[b\left(a+b+c\right)+ca\right]}}{\sqrt{c\left(a+b+c\right)+ab}}\)
\(=\frac{\sqrt{\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)}}{\sqrt{ac+bc+c^2+ab}}=\frac{\sqrt{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\left(a+b\right)^2}=a+b\) (1)
Tương tự \(\hept{\begin{cases}\frac{\sqrt{\left(b+ca\right)\left(c+ab\right)}}{\sqrt{a+bc}}=b+c\text{ }\left(2\right)\\\frac{\sqrt{\left(c+ab\right)\left(a+bc\right)}}{\sqrt{b+ac}}=a+c\text{ }\left(3\right)\end{cases}}\)
Cộng vế với vế của (1)(2)(3) lại ta được :
\(\frac{\sqrt{\left(a+bc\right)\left(b+ca\right)}}{\sqrt{c+ab}}+\frac{\sqrt{\left(b+ca\right)\left(c+ab\right)}}{\sqrt{a+bc}}+\frac{\sqrt{\left(c+ab\right)\left(a+bc\right)}}{\sqrt{b+ac}}=2\left(a+b+c\right)=2\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
\(\text{a+b+c = 1}\Rightarrow a=1-b-c\Rightarrow a+bc=1-b-c+bc=\left(b-1\right)\left(c-1\right)\)
tương tự \(b+ca=\left(a-1\right)\left(c-1\right);c+ab=\left(a-1\right)\left(b-1\right)\)
đặt a-1=x ; b-1=y ; c-1=z , ta có
\(P=\sqrt{\frac{yzzx}{xy}}+\sqrt{\frac{xzxy}{yz}}+\sqrt{\frac{xyyz}{xz}}=\sqrt{z^2}+\sqrt{x^2}+\sqrt{y^2}=x+y+z=1\)
Ta có : \(\left\{{}\begin{matrix}a+bc=a\left(a+b+c\right)+bc=\left(a+b\right)\left(a+c\right)\\b+ca=b\left(a+b+c\right)+ca=\left(b+c\right)\left(a+b\right)\\c+ab=c\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\end{matrix}\right.\)
Từ đó ta có :
\(P=\Sigma\sqrt{\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a+b\right)}{\left(a+c\right)\left(b+c\right)}}\)
\(P=\Sigma\sqrt{\left(a+b\right)^2}\)
\(P=\Sigma\left(a+b\right)\)
\(P=2\left(a+b+c\right)\)
\(P=2\)