Cho\(\Delta ABC\left(AB< AC\right),D\in BC\)thoả DC<DB.
\(CMR:AB^2.CD+AC^2.DB-AD^2.BC=CD.DB.BC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
=>BM<CM
b: Ta có: ΔHBM vuông tại H
nên \(\widehat{HMB}< 90^0\)
=>\(\widehat{DMH}>90^0\)
=>DH>DM
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
A C D E B
Kẻ DF vuông AH tại F
Xét \(\Delta\)DAF và \(\Delta\)ABH có: AD = AB ( gt ) ; ^DFA = ^AHB ( = 90 độ ) ; ^ADF = ^BAH ( cùng phụ ^ACH )
=> \(\Delta\)DAF = \(\Delta\)ABH ( cạnh huyền - góc nhọn )
=> DF = AH ( 1)
Nối DH Xét \(\Delta\)DFH và \(\Delta\)HED có: DH chung ; ^DFH = ^HED = 90 độ ; ^FDH = ^EHD ( vì DF//EH ( cùng vuông AH ); so le trong )
=> \(\Delta\)DFH = \(\Delta\)HED
=> DF = EH ( 2)
Từ (1) ; (2) => AH = EH
A B C D E
Gọi AD cắt đường tròn (ABC) tại E khác A. Ta dễ có các cặp tam giác đồng dạng sau:
\(\Delta\)ABD ~ \(\Delta\)CED (g.g), \(\Delta\)ACD ~ \(\Delta\)BED (g.g) => AB.CD = AD.CE và AC.BD = AD.BE
Khi đó hệ thức cần chứng minh trở thành: AB.AD.CE + AC.AD.BE - AD2.BC = CD.DB.BC
<=> AD(AB.CE + AC.BE) - AD2.BC = CD.DB.BC
=> AD(BC.AE) - AD2.BC = CD.DB.BC (ĐL Ptolemy)
<=> AD.AE - AD2 = CD.DB <=> AD.DE = CD.DB (Luôn đúng với hệ thức lượng đường tròn)
Do vậy hệ thức cần chứng minh là đúng. Vậy AB2.CD + AC2.DB - AD2.BC = CD.DB.BC (đpcm).