K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)

b: =(1-2x)(1+2x)

c: \(=\left(2-3x\right)\left(4+6x+9x^2\right)\)

d: =(x+3)^3

e: \(=\left(2x-y\right)^3\)

f: =(x+2y)(x^2-2xy+4y^2)

22 tháng 10 2018

1. a) \(8x^3-32x=8x\left(x^2-4\right)=8x\left(x-4\right)\left(x+4\right)\)

b) \(y^3+64+\left(y+4\right)\left(y-16\right)=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)

\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)=\left(y+4\right)\left(y^2-4y+16+y-16\right)\)

\(=\left(y-4\right)\left(y^2-3y\right)=\left(y-4\right)y\left(y-3\right)\)

2) a)

\(4x^3-9x=0\)

\(\Leftrightarrow x\left(4x^2-9\right)=0\)

\(\Leftrightarrow x\left(2x+3\right)\left(2x-3\right)=0\)

<=> x=0 hoặc 2x+3=0 hoặc 2x-3=0

<=> x=0 hoặc x=-3/2 hoặc x=3/2

b) \(A=x^3-9x^2+27x-27=x^3-3.x^2.3+3.x.3^2-3^3=\left(x-3\right)^3\)

Tại x=203

A=(203-3)3=2003

22 tháng 10 2018

Bài 1 :

a) \(8x^3-32x\)

\(=8x\left(x^2-4\right)\)

\(=8x\left(x-2\right)\left(x+2\right)\)

b) \(y^3+64+\left(y+4\right)\left(y-16\right)\)

\(=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)

\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)\)

\(=\left(y+4\right)\left(y^2-4x+16+y-16\right)\)

\(=\left(y+4\right)\left(y^2+y-4x\right)\)

Bài 2 :

a) \(4x^3-9x=0\)

\(x\left(4x^2-9\right)=0\)

\(x\left[\left(2x\right)^2-3^2\right]=0\)

\(x\left(2x-3\right)\left(2x+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\2x-3=0\\2x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\\x=\frac{-3}{2}\end{cases}}}\)

P.s: ở trên dùng ngoặc vuông nhé

b) \(A=x^3-9x^2+27x-27\)

\(A=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3\)

\(A=\left(x-3\right)^3\)

Thay x = 203 vào biểu thức ta có :

\(A=\left(203-3\right)^3\)

\(A=200^3\)

\(A=8000000\)

a: \(=9xy\left(y-2x\right)\)

b: \(=2\left(3x^2-y\right)\)

c: \(=7x\left(x-y\right)+14y\left(x-y\right)=7\left(x-y\right)\left(x+2y\right)\)

d: \(=\left(\sqrt{7}-x\right)\left(\sqrt{7}+x\right)\)

e: \(=\left(x+4\right)^2\)

f: \(=\left(1-3x\right)\left(1+3x+9x^2\right)\)

g: \(=\left(x-3\right)^3\)

13 tháng 11 2021

\(a,\Leftrightarrow x\left(2x-7\right)+2\left(2x-7\right)=0\\ \Leftrightarrow\left(x+2\right)\left(2x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{7}{2}\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow\left(2x-1\right)\left(2x+1\right)-2\left(2x-1\right)^2=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+1-4x+2\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(-2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

1: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\)

hay \(x\in\left\{3;\dfrac{1}{4}\right\}\)

2: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2x+16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1-x^2+2x-16\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-15\right)=0\)

hay \(x\in\left\{1;5\right\}\)

3: \(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(2x+1\right)=0\)

hay \(x\in\left\{1;\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

4: \(\Leftrightarrow x^2\left(x+4\right)-9\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-3\right)\left(x+3\right)=0\)

hay \(x\in\left\{-4;3;-3\right\}\)

5: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=x-1\\3x+5=1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-6\\4x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)

6: \(\Leftrightarrow\left(6x+3\right)^2-\left(2x-10\right)^2=0\)

\(\Leftrightarrow\left(6x+3-2x+10\right)\left(6x+3+2x-10\right)=0\)

\(\Leftrightarrow\left(4x+13\right)\left(8x-7\right)=0\)

hay \(x\in\left\{-\dfrac{13}{4};\dfrac{7}{8}\right\}\)

14 tháng 2 2022

1.

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=\left(x-3\right)\left(5x-2\right)\)

\(\Leftrightarrow x+3=5x-2\)

\(\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\)

2.

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=\left(x-1\right)\left(x^2-2x+16\right)\)

\(\Leftrightarrow x^2+x+1=x^2-2x+16\)

\(\Leftrightarrow3x=15\Leftrightarrow x=5\)

3.

\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2};x=-\dfrac{1}{2}\end{matrix}\right.\)

19 tháng 11 2023

a: Sửa đề: \(M=3x-\sqrt[3]{27x^3+27x^2+9x+1}\)

\(=3x-\sqrt[3]{\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2+1^3}\)

\(=3x-\sqrt[3]{\left(3x+1\right)^3}\)

\(=3x-3x-1=-1\)

b: \(N=\sqrt[3]{8x^3+12x^2+6x+1}-\sqrt[3]{x^3}\)

\(=\sqrt[3]{\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3}-x\)

\(=\sqrt[3]{\left(2x+1\right)^3}-x\)

=2x+1-x

=x+1

25 tháng 11 2023

2: ĐKXĐ: x>=0

\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)

=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)

=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)

=>\(-2\sqrt{3x}=-4\)

=>\(\sqrt{3x}=2\)

=>3x=4

=>\(x=\dfrac{4}{3}\left(nhận\right)\)

3: 

ĐKXĐ: x>=0

\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)

=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)

=>\(13\sqrt{2x}=20+3\sqrt{2}\)

=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)

=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)

=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)

4: ĐKXĐ: x>=-1

\(\sqrt{16x+16}-\sqrt{9x+9}=1\)

=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>\(\sqrt{x+1}=1\)

=>x+1=1

=>x=0(nhận)

5: ĐKXĐ: x<=1/3

\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)

=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)

=>\(5\sqrt{1-3x}=10\)

=>\(\sqrt{1-3x}=2\)

=>1-3x=4

=>3x=1-4=-3

=>x=-3/3=-1(nhận)

6: ĐKXĐ: x>=3

\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)

=>x-3=16

=>x=19(nhận)