Bai 1: cho \(n\inℕ^∗\). CMR : \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< =\frac{1}{\sqrt{3n+1}}\). <= nghia la be hon hoac bang nha cac ban
Bai 2 : Cho a>0;b>0. CMR : \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}< =\sqrt{\sqrt{ab}}\)
Bai 3: Cho x, y, z > 0 và x + y + z = 1. Chứng minh rằng:\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}>=1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(3,\)Áp dụng bđt Mincopski \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)hai lần có
\(VT\ge\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{yz}+\sqrt{zx}\right)^2}+\sqrt{z+xy}\)
\(\ge\sqrt{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)
\(=\sqrt{x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)
\(=\sqrt{1+2t+t^2}\left(t=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
\(=\sqrt{\left(t+1\right)^2}=t+1=VP\left(Đpcm\right)\)
\(2,\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{a}.\sqrt{b}}}=\sqrt{\sqrt{ab}}\left(đpcm\right)\)