bài 2: cho a+b+c=2p . chứng minh đẳng thức 2bc+b2+c2-a2+4p(p-a)
giúp mình với
mình đang rất cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)
\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ac-ab}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)
CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}=\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)
Vì sao bước thứ 2 từ dưới lên lại có thể suy ra (a−b)(b−c)(a−c)/(a−b)(b−c)(a−c)=1?
\(2bc+b^2+c^2-a^2\)
\(=\left(b+c\right)^2-a^2\)
\(=\left(a+b+c\right)\left(b+c-a\right)\)
\(=2p\left(a+b+c-2a\right)\)
\(=2p\left(2p-2a\right)=4p\left(p-a\right)\)
biến đổi vế phải ta được:
4p(p -a ) = 4p\(^2\)-4pa
=(2p)\(^2\)-2p.2a
=(a+b+c)\(^2\)-2a(a+b+c)
=\(a^2+b^2+c^2+2ab+2ac+2bc\)-\(2a^2-2ab-2ac\)
=\(2bc+b^2+c^2-a^2\)=vế trái (đpcm)
a+b+c = 2p => 4p = 2(a+b+c); p=(a+b+c)/2
VP = 4p(p-a) = 2(a+b+c)(\(\frac{a+b+c}{2}-a\))
= \(2\left(a+b+c\right)\left(\frac{a+b+c-2a}{2}\right)\)
=\(2\left(a+b+c\right)\cdot\frac{b+c-a}{2}=\left(a+b+c\right)\left(b+c-a\right)\)
\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)
\(=2bc+b^2+c^2-a^2\) = VT (đpcm)
#)Giải :
Ta có : \(a+b+c=2p\)
\(\Rightarrow b+c=2p-a\)
\(\Rightarrow\left(b+c\right)^2=\left(2p-a\right)^2\)
\(\Rightarrow b^2+c^2+2bc=4p^2-4pa+a^2\)
\(\Rightarrow2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
\(\Rightarrowđpcm\)