K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 2 2020

\(\frac{1}{a}\ge1-\frac{2}{2b+1}+1-\frac{3}{3c+2}=\frac{2b-1}{2b+1}+\frac{3c-1}{3c+2}\ge2\sqrt{\frac{\left(2b-1\right)\left(3c-1\right)}{\left(2b+1\right)\left(3c+2\right)}}\)

Tương tự: \(\frac{2}{2b+1}\ge\frac{a-1}{a}+\frac{3c-1}{3c+2}\ge2\sqrt{\frac{\left(a-1\right)\left(3c-1\right)}{a\left(3c+2\right)}}\)

\(\frac{3}{3c+2}\ge\frac{a-1}{a}+\frac{2b-1}{2b+1}\ge2\sqrt{\frac{\left(a-1\right)\left(2b-1\right)}{a\left(2b+1\right)}}\)

Nhân vế với vế:

\(\frac{6}{a\left(2b+1\right)\left(3c+2\right)}\ge\frac{8\left(a-1\right)\left(2b-1\right)\left(3c-1\right)}{a\left(2b+1\right)\left(3c+2\right)}\)

\(\Rightarrow\left(a-1\right)\left(2b-1\right)\left(3c-1\right)\le\frac{3}{4}\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

Lời giải:

a)

\((2a-5b)^2+(2a+5b)^2\)

\(=4a^2-2.2a.5b+25b^2+4a^2+2.2a.5b+25b^2\)

\(=8a^2+50b^2=2(4a^2+25b^2)\)

b)

\((a-2b-3c)^2-(a-2b+3c)^2\)

\(=[(a-2b-3c)-(a-2b+3c)][(a-2b-3c)+(a-2b+3c)]\)

\(=-6c(2a-4b)=12c(2b-a)\)

NV
14 tháng 5 2021

\(P=a^2-2a+b^2-2b+c^2-2c+3\)

\(P=\left(a^2+\dfrac{9}{4}\right)+\left(b^2+4\right)+\left(c^2+\dfrac{25}{4}\right)-2a-2b-2c-\dfrac{19}{2}\)

\(P\ge3a+4b+5c-2a-2b-2c-\dfrac{19}{2}\)

\(P\ge a+2b+3c-\dfrac{19}{2}=13-\dfrac{19}{2}=\dfrac{7}{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};2;\dfrac{5}{2}\right)\)

14 tháng 5 2021

Anh ;-; em chưa kịp làm :|

11 tháng 8 2018

Câu a : \(\left(2a-3b\right)^2-\left(2a+3b\right)^2\)

\(=\left(2a-3b+2a+3b\right)\left(2a-3b-2a-3b\right)\)

\(=4a.-6b=-24ab\)

Câu b : \(\left(a-2b-3c\right)^2-\left(a-2b+3c\right)^2\)

\(=\left(a-2b-3c+a-2b+3c\right)\left(a-2b-3c-a+2b-3c\right)\)

\(=\left(2a-4b\right).\left(-6c\right)\)

\(=2\left(a-2b-3c\right)\)

12 tháng 8 2018

DƯƠNG PHAN KHÁNH DƯƠNG cậu ơi cậu giải thích cho mình cách phân tích của câu a với câu b đc k ạ ?

30 tháng 4 2020

\(a^2b^2c^2+\left(a+1\right)\left(1+b\right)\left(1+c\right)\ge a+b+c+ab+bc+ca+3\)

\(\Leftrightarrow\left(abc\right)^2+abc-2\ge0\Leftrightarrow\left(abc+2\right)\left(abc-1\right)\ge0\Leftrightarrow abc\ge1\)

Áp dụng BĐT Cosi ta có:

\(\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b+2c}{45}+\frac{2c+3a}{75}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)\left(2c+3b\right)}\cdot\frac{b+2c}{45}\cdot\frac{2c+3a}{75}}=\frac{a}{5}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c+2a}{45}+\frac{2a+3b}{75}\ge\frac{b}{5}\left(2\right)\\\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}+\frac{a+2b}{45}+\frac{2b+3c}{75}\ge\frac{c}{5}\left(3\right)\end{cases}}\)

Từ (1)(2)(3) ta có:

\(P+\frac{2\left(a+b+c\right)}{15}\ge\frac{a+b+c}{5}\Leftrightarrow P\ge\frac{1}{15}\left(a+b+c\right)\)

Mà \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow S\ge\frac{1}{5}\)

Dấu "=" xảy ra <=> a=b=c=1

3 tháng 5 2020

CHÚC BAN HỌC GIỎI