101a + 100b + 101c = 1211
tìm tổng a+b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dạng tổng quát của A:
A = Σ(-1)(3n + 2) (n = 0; 1; 2;...)
b) A = 2 - 5 + 8 - 11 + ... + 98 - 101
= (2 + 8 + ... + 98) - (5 + 11 + ... + 101)
= [(98 - 2) : 6 + 1].(98 + 2) : 2 - [(101 - 5) : 6 + 1].(101 + 5) : 2
= 17.50 - 17.53
= 17 . (50 - 53)
= 17.(-3)
= -51
a, Dạng tổng quát thứ n của A có thể viết như sau: A = (-1)^(n+1) * (3n - 1)
b, Để tính A, ta cần tìm số phần tử trong dãy và áp dụng công thức tổng của dãy số học.
Số phần tử trong dãy có thể tính bằng công thức: n = (101 - 2) / 3 + 1 = 34
Áp dụng công thức tổng của dãy số học: S = (n/2) * (a1 + an), với a1 là phần tử đầu tiên và an là phần tử cuối cùng.
a1 = 2, an = -101
S = (34/2) * (2 + (-101)) = 17 * (-99) = -1683
Vậy A = -1683.
Bài 1:
a: \(A=x^2+2x+4\)
\(=x^2+2x+1+3\)
\(=\left(x+1\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
Vậy: \(A_{min}=3\) khi x=-1
b: \(B=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x-10=0
=>x=10
Vậy: \(B_{min}=1\) khi x=10
c: \(C=x^2-2x+y^2+4y+8\)
\(=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x-1=0 và y+2=0
=>x=1 và y=-2
Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)
Bài 2:
a: \(A=5-8x-x^2\)
\(=-\left(x^2+8x\right)+5\)
\(=-\left(x^2+8x+16-16\right)+5\)
\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)
Dấu '=' xảy ra khi x+4=0
=>x=-4
b: \(B=x-x^2\)
\(=-\left(x^2-x\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)
c: \(C=4x-x^2+3\)
\(=-x^2+4x-4+7\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7< =7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
d: \(D=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x^2-6x+9+2\right)\)
\(=-\left(x-3\right)^2-2< =-2\forall x\)
Dấu '=' xảy ra khi x-3=0
=>x=3
trả thể tìm đc
Gọi y là tổng của 3 số a;b;c
\(\overline{101a}+\overline{100b}+\overline{101c}\)
có 3 trường hợp :
\(\left[{}\begin{matrix}\overline{101a}+\overline{100b}+\overline{101c}=\overline{302y}\ne1211\left(a+b+c< 10\right)\\\overline{101a}+\overline{100b}+\overline{101c}=\overline{303y}\ne1211\left(10\le a+b+c< 20\right)\\\overline{101a}+\overline{100b}+\overline{101c}=\overline{304}\ne1211\left(20\le a+b+c< 30\right)\end{matrix}\right.\)
Xét cả 3 trường hợp thì ko có trường hợp nào thoả mãn đề bài