Cho tam giác ABC có A = 90 độ,trên cạnh AC lấy điểm E sao cho AE = 1/3 AC.Trên tia đối của tia AE lấy điểm D sao cho AD = AE.Biết EB = EC.
a) Chứng minh BE là phân giác của góc ABC.
b) Chứng minh BD vuông góc với BC
c) Kẻ EK vuông góc với BC tại K. Chứng mnh KB = KC
AE = 1/3.AC (gt) => AE = 1/2EC
mà EC = EB (gt)
=> AE = 1/2EB
tam giác EAB vuông tại A
=> góc EBA = 30 (xem bổ đề để biết thêm chi tiết) (1)
tam giác EAB vuông tại A
=> góc EBA + góc BEA = 90 (đl)
=> góc BEA = 90 - 30 = 60
góc BEA + góc BEC = 180 (kb)
=> góc BEC = 180 - 60 = 120
EB = EC (Gt) => tam giác EBC cân tại E (đn) => góc EBC = (180 - góc BEC) : 2 (đl)
=> góc EBC = (180 - 120) : 2 = 30 (2)
(1); (2); BE nằm giữa BA và BC
=> BE là phân giác của góc ABC (đn)
b, xét tam giác ABE và tam giác ADB có : AB chung
AE = AD (gt)
góc BAE = góc BAD = 90
=> tam giác ABE = tam giác ADB (2cgv)
=> góc ABE = góc ABD (đn)
mà góc ABE = 30
=> góc ABD = 60
có : góc ABD + góc ABE + góc EBC = góc CBD
góc ABD = góc ABE = góc EBC = 30
=> góc CBD = 30.3 = 90
=> BD _|_ BC (đn)
c, xét tam giác ECK và tam giác EBK có : EK chung
góc EKB = góc EKC = 90
EB = ED (gt)
=> tam giác EKC = tam giác EKB (ch - cgv)
=> KC = KB (đn)