Cho a,b>0. CM: (1+a)[(1+b)^2]>=1+5ab. (Dùng BĐT).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
a/ \(VT=\frac{1}{a+a+b+c}+\frac{1}{a+b+b+c}+\frac{1}{a+b+c+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\frac{3}{4}\)
b/ \(VT\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{bc}{4}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{ca}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{b}{4}+\frac{c}{4}+\frac{c}{4}+\frac{a}{4}=\frac{a+b+c}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Bạn nên đánh lại rõ ràng hơn, có phần hỗ trợ để đánh công thức toán bạn nhé, hoặc bạn chụp hình rồi gửi lên cũng được.
Câu hỏi của Called love - Toán lớp 8 - Học toán với OnlineMath
Ban jtrar My làm òi nhé !
Bạn tham khảo tại đây :
Câu hỏi của Nguyễn Anh Quân - Toán lớp 8 - Học toán với OnlineMath
~ Ủng hộ nhé
dễ cm bđt: x²+y² ≥ (x+y)²/2, khai triễn là ra hằng đẳng đúng, dấu "=" khi x = y
ad: P = (x+1/x)² + (y+1/y)² ≥ [x+1/x + y+1/y]²/2 = [(x+y) + (x+y)/xy]²/2 (*)
bđt côsi: 1 = x+y ≥ 2√(xy) => 1 ≥ 4xy => 1/xy ≥ 4
thay vào (*): P ≥ [1 + 1/xy]²/2 ≥ [1 + 4]²/2 = 25/2 (đpcm), dấu "=" khi x = y = 1/2
Đặt \(P=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
Áp dụng bđt bunhiacopxki ta có:
\(\left[\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\right]\left(1^2+1^2\right)\ge\left[\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)\right]^2\)
\(\Leftrightarrow2P\ge\left(1+\frac{1}{x}+\frac{1}{y}\right)^2\)(1)
Ta có BĐT:\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\)( bạn tự CM = cách chuyển vế nhé )
Áp dụng bđt cô si cho 2 số dương x,y ta có:
\(\sqrt{xy}\le\frac{x+y}{2}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge4\)(2)
Thay (2) vào (1) ta được:
\(2P\ge25\)
\(\Rightarrow P\ge\frac{25}{2}\left(đpcm\right)\)