Chứng minh rằng "Nếu trừ các giá trị của biến lượng với cùng một số thì số trung bình của biến lượng cũng được trừ với số đó".
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Giả sử
- \(x_1,x_2,x_3,.....,x_k\)là k có giá trị khác nhau về biến lượng
- \(m_1,m_2,m_3,...,m_k\)là k tần số tương ứng.
Ta có: \(n=m_1+m_2+m_3+...+m_k\)
Suy ra: \(\overline{x}=\frac{x_1m_1+x_2m_2+....+x_km_k}{n}\)
Giả sử a là số được cộng thêm vào mỗi biến lượng.
Vậy giá trị của các biến lượng là: \(\left(x_1+a\right),\left(x_2+a\right),...\left(x_k+a\right)\)
Khi đó:
\(\overline{X}=\frac{\left(x_1+a\right)m_1+\left(x_2+a\right)m_2+....+\left(x_k+a\right)m_k}{n}\)
\(=\frac{x_1m_1+x_2m_2+...+x_km_k+\left(m_1+m_2+..+m_k\right)a}{n}\)
\(=\frac{x_1m_1+x_2m_2+x_3m_3+...+x_km_k+na}{n}\)
\(=\frac{x_1m_1+x_2m_2+x_3m_3+...+x_km_k}{n}+a=\overline{x}+a\left(đpcm\right)\)
Giả sử giá trị của dấu hiệu là x, tần số của giá trị là n, số cộng thêm là a.
Ta có: Số trung bình cộng ban đầu là:
X¯¯¯¯=x1.n1+x2.n2+...+xk.nkNX¯=x1.n1+x2.n2+...+xk.nkN
Số trung bình cộng sau khi cộng thêm a là:
X′¯¯¯¯¯¯=(x1+a).n1+(x2+a).n2+...+(xk+a).nkNX′¯=(x1+a).n1+(x2+a).n2+...+(xk+a).nkN
X′¯¯¯¯¯¯=(x1.n1+x2.n2+...+xk.nk)+a.(n1+n2+...+nkNX′¯=(x1.n1+x2.n2+...+xk.nk)+a.(n1+n2+...+nkN
=(x1.n1+x2.n2+...+xk.nk)N+a.NN=(x1.n1+x2.n2+...+xk.nk)N+a.NN
(vì tổng các tần số n1+n2+...+nk=Nn1+n2+...+nk=N)
Nên X′¯¯¯¯¯¯=X¯¯¯¯+aX′¯=X¯+a
Vậy số trung bình cộng cũng được cộng thêm với số đó. (đpcm)
a, Ta có ; X = x1 n1+x2 n2+ x3+ n3+...+xk nk
N
<=> qX = q (x1 n1+x2 n2 + x3 n3 +...+ xk nk )
N
= ( qx1)n1+(qx2)n2 +( qx3)n3+...+(qxk)nk
N
Các giá trị của biến lượng : \(x_1;x_2;...;x_k\)có tần số tương ứng là: \(n_1;n_2;...;n_k\)
Trung bình của biến lượng \(\overline{X}=\frac{n_1.x_1+n_2.x_2+...+n_k.x_k}{n_1+n_2+...+n_k}\)
Nếu trừ các giá trị biến lượng cùng một số khi đó ta có trung bình mới của biến lượng:
\(\frac{n_1\left(x_1-a\right)+n_2.\left(x_2-a\right)+...+n_k.\left(x_k-a\right)}{n_1+n_2+...+n_k}=\frac{n_1.x_1+n_2.x_2+...+n_k.x_k-a\left(n_1+n_2+...+n_k\right)}{n_1+n_2+...+n_k}\)
\(=\frac{n_1.x_1+n_2.x_2+...+n_k.x_k}{n_1+n_2+...+n_k}-\frac{a\left(n_1+n_2+...+n_k\right)}{n_1+n_2+...+n_k}=\overline{X}-a\)
Giả sử:
Ta có:
\(N=x_1+x_2+x_3+...+x_k\Rightarrow\overline{X}=\frac{x_1n_1+x_2n_2+x_3n_3+...+x_kn_k}{N}\)
Giả sử a là số được trừ đi ở mọi biến lượng
Vậy, giá trị của các biến lượng là:
\(\left(x_1-a\right),\left(x_2-a\right),\left(x_3-a\right),...,\left(x_k-a\right).\)
Suy ra :
\(\overline{X}=\frac{\left(x_1-a\right)n_1+\left(x_2-a\right)n_2+\left(x_3-a\right)n_3+...+\left(x_k-a\right)n_k}{N}\)
\(=\frac{x_1n_1+x_2n_2+x_3n_3+...+x_kn_k+\left(-n_1-n_2-n_3-...-n_k\right)a}{N}\)
\(=\frac{x_1n_1+x_2n_2+x_3n_3+...+x_kn_k-Na}{N}\)
\(=\frac{x_1n_1+x_2n_2+x_3n_3+...+x_kn_k}{N}-a=\overline{X}-a\left(đpcm\right)\)