Giải pt
\(\sqrt{x^2+5x+3}+\sqrt{x^2+5x-2}=5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,ĐK: x≥-1
Đặt \(t=\sqrt{x^2+5x+4}\left(t\ge0\right)\)
⇒ \(t^2+t-6=0\)
\(\Leftrightarrow\left(t+3\right)\left(t-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-3\left(loại\right)\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x^2+5x+4}=2\)
\(\Leftrightarrow x^2+5x+4=4\)
\(\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-5\left(loại\right)\end{matrix}\right.\)
b,ĐK: \(0\le x\le2\)
Ta có: \(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\)
\(\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\) (1)
Đặt \(t=\sqrt{x^2+3x}\left(t\ge0\right)\)
\(\Rightarrow\left(1\right)\Leftrightarrow-t^2+10-3t=0\)
\(\Leftrightarrow\left(t+5\right)\left(2-t\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-5\left(loại\right)\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x^2+3x}=2\)
\(\Leftrightarrow x^2+3x=4\)
\(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\left(loại\right)\\x=1\left(tm\right)\end{matrix}\right.\)
ĐKXĐ: ...
\(\sqrt[3]{x^3+5x^2}-x-2+x+1-\sqrt{\dfrac{5x^2-2}{6}}=0\)
\(\Leftrightarrow\dfrac{x^3+5x^2-\left(x+2\right)^3}{\left(x+2\right)^2+\left(x+2\right)\sqrt[3]{x^3+5x^2}+\sqrt[3]{\left(x^3+5x^2\right)^2}}+\dfrac{\left(x+1\right)^2-\dfrac{5x^2-2}{6}}{x+1+\sqrt{\dfrac{5x^2-2}{6}}}=0\)
\(\Leftrightarrow\left(x^2+12x+8\right)\left(\dfrac{1}{6\left(x+1\right)+\sqrt{6\left(5x^2-2\right)}}-\dfrac{1}{\left(x+2\right)^2+\left(x+2\right)\sqrt[3]{x^3+5x^2}+\sqrt[3]{\left(x^3+5x^2\right)^2}}\right)=0\)
\(\Leftrightarrow x^2+12x+8=0\)
Đk: \(x\ge6\)
pt\(\Leftrightarrow\sqrt{5x^2+4x}=5\sqrt{x}+\sqrt{x^2-3x-18}\)
\(\Leftrightarrow5x^2+4x=25x+x^2-3x-18+10\sqrt{x\left(x^2-3x-18\right)}\)
\(\Leftrightarrow2x^2-9x+9=5\sqrt{x^3-3x^2-18x}\)
\(\Leftrightarrow4x^4+81x^2+81-36x^3-162x+36x^2=25\left(x^3-3x^2-18x\right)\)
\(\Leftrightarrow4x^4-61x^3+192x^2+288x+81=0\)
\(\Leftrightarrow\left(x-9\right)\left(4x+3\right)\left(x^2-7x-3\right)=0\)
\(\Leftrightarrow\left(4x+3\right)\left(x-9\right)\left(x-\dfrac{7+\sqrt{61}}{2}\right)\left(x-\dfrac{7-\sqrt{61}}{2}\right)=0\)
mà x \(\ge6\) \(\Rightarrow\left\{{}\begin{matrix}4x+3>0\\x-\dfrac{7-\sqrt{61}}{2}>0\end{matrix}\right.\)
\(\Rightarrow\left(x-9\right)\left(x-\dfrac{7+\sqrt{61}}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=\dfrac{7+\sqrt{61}}{2}\end{matrix}\right.\)
Vậy.....
Sau khi bình phương lần thứ nhất, đến:
\(2x^2-9x+9=5\sqrt{x^3-3x^2-18}\)
Thay vì bình phương tiếp lên bậc 4 rất cồng kềnh, em có thể đặt ẩn phụ:
\(\Leftrightarrow2x^2-9x+9=5\sqrt{\left(x+3\right)\left(x^2-6x\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-6x}=a\\\sqrt{x+3}=b\end{matrix}\right.\) ta được:
\(2a^2+3b^2=5ab\)
\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)
a:
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)
=>|x-3|=3
=>x-3=3 hoặc x-3=-3
=>x=0 hoặc x=6
b: \(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
=>\(\left|\sqrt{x-1}+1\right|=2\)
=>\(\left[{}\begin{matrix}\sqrt{x-1}+1=2\\\sqrt{x-1}+1=-2\left(loại\right)\end{matrix}\right.\Leftrightarrow\sqrt{x-1}=1\)
=>x-1=1
=>x=2
c:
ĐKXĐ: x>4/5
PT \(\Leftrightarrow\sqrt{\dfrac{5x-4}{x+2}}=2\)
=>\(\dfrac{5x-4}{x+2}=4\)
=>5x-4=4x+8
=>x=12(nhận)
d: ĐKXĐ: x-4>=0 và x+1>=0
=>x>=4
PT =>\(\left(\sqrt{x-4}+\sqrt{x+1}\right)^2=5^2=25\)
=>\(x-4+x+1+2\sqrt{\left(x-4\right)\left(x+1\right)}=25\)
=>\(\sqrt{4\left(x^2-3x-4\right)}=25-2x+3=28-2x\)
=>\(\sqrt{x^2-3x-4}=14-x\)
=>x<=14 và x^2-3x-4=(14-x)^2=x^2-28x+196
=>x<=14 và -3x-4=-28x+196
=>x<=14 và 25x=200
=>x=8(nhận)
a) \(\sqrt{x^2-6x+9}=3\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)
\(\Leftrightarrow\left|x-3\right|=3 \)
TH1: \(\left|x-3\right|=x-3\) với \(x\ge3\)
Pt trở thành:
\(x-3=3\) (ĐK: \(x\ge3\))
\(\Leftrightarrow x=3+3\)
\(\Leftrightarrow x=6\left(tm\right)\)
TH2: \(\left|x-3\right|=-\left(x-3\right)\) với \(x< 3\)
Pt trở thành:
\(-\left(x-3\right)=3\) (ĐK: \(x< 3\))
\(\Leftrightarrow x-3=-3\)
\(\Leftrightarrow x=-3+3\)
\(\Leftrightarrow x=0\left(tm\right)\)
b) \(\sqrt{x+2\sqrt{x-1}}=2\) (ĐK: \(x\ge1\))
\(\Leftrightarrow x+2\sqrt{x-1}=4\)
\(\Leftrightarrow2\sqrt{x-1}=4-x\)
\(\Leftrightarrow4\left(x-1\right)=16-8x+x^2\)
\(\Leftrightarrow4x-4=16-8x+x^2\)
\(\Leftrightarrow x^2-12x+20=0\)
\(\Leftrightarrow\left(x-10\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
c) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (ĐK: \(x\ge\dfrac{4}{5}\))
\(\Leftrightarrow\dfrac{5x-4}{x+2}=4\)
\(\Leftrightarrow5x-4=4x+8\)
\(\Leftrightarrow x=12\left(tm\right)\)
ĐK: \(x^2+5x+3\ge0\); \(x^2+5x-2\ge0\)(1)
\(\sqrt{x^2+5x+3}+\sqrt{x^2+5x-2}=5\)(2)
Dễ thấy
\(\sqrt{x^2+5x+3}\ne\sqrt{x^2+5x-2}\)
pt (2) <=> \(\frac{5}{\sqrt{x^2+5x+3}-\sqrt{x^2+5x-2}}=5\)
<=> \(\frac{1}{\sqrt{x^2+5x+3}-\sqrt{x^2+5x-2}}=1\)
<=>\(\sqrt{x^2+5x+3}-\sqrt{x^2+5x-2}=1\)
<=> \(\sqrt{x^2+5x+3}=1+\sqrt{x^2+5x-2}\)
<=> \(x^2+5x+3=1+x^2+5x-2+2\sqrt{x^2+5x-2}\)
<=> \(\sqrt{x^2+5x-2}=2\)
<=> \(x^2+5x-6=0\)
<=> x=1 ( tm đk (1) )
hoặc x=-6 ( tmđk (1))
√x2+5x+3 + √x2+5x-2 =5
<=> √x2+5x+3 = 5-√x2+5x-2
<=> x2+5x+3=25-10√x2+5x-2 +x2+5x-2
<=> 3=25-10√x2+5x-2 -2
<=> 3=23-10√x2+5x-2
<=> 10√x2+5x-2=23-3=20
<=> √x2+5x-2=2
<=> x2+5x-2=4
<=> x2+5x-2-4=0
<=> x2+5x-6=0
<=> x=-5(+-) √52-4.1.(-6) / 2.1
<=> x=-5(+-)√25+24 / 2
<=>x=-5+7 / 2 hoặc x=-5-7 / 2
<=> x=1 hoặc x=(-6)