2/y+3/z:394/x=bao nhiêu
HELP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mỗi giá trị khác nhau của x ,y ,z ta có các cặp số khác nhau.
Ở đây ta có 1 giá trị x , 1 giá trị y, 1 giá trị z và không có giá trị nào cùng nằm trong một bộ ba x , y ,z
NHẩm ra 3 giá trị.
Từ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\) (Nhân cả tử và mẫu tỷ số thứ nhất với 2, tỷ số thứ hai với 3)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{95-5}{9}=10\)
Từ \(\frac{2x-2}{4}=10\Rightarrow2x-2=40\Rightarrow2x=42\Rightarrow x=21\)
Từ \(\frac{3y-6}{9}=10\Rightarrow3y-6=90\Rightarrow3y=96\Rightarrow y=32\)
Từ \(\frac{z-3}{4}=10\Rightarrow z-3=40\Rightarrow z=43\)
Khi đó x+y+z=21+32+43=96
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(=>\frac{2\left(x-1\right)}{2.2}=\frac{3\left(y-2\right)}{3.3}=\frac{z-3}{4}\)
\(=>\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Theo t/c dãy rỉ số=nhau:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)\(=\frac{\left(2x+3y-z\right)+\left(-2-6+3\right)}{9}=\frac{95+\left(-5\right)}{9}=\frac{90}{9}=10\)
=>2x-2=10.4=>2x-2=40=>2x=42=>x=21
3y-6=10.9=>3y-6=90=>3y=96=>y=32
z-3=10.4=>z-3=40=>z=43
Vậy x+y+z=21+32+4396
Đặt \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=k\)
=> \(\left\{{}\begin{matrix}x=5k\\y=7k\\z=3k\end{matrix}\right.\)
Mà x2+y2-z2 = 585 => 25k2 + 49k2 - 9k2 = 65k2 => k2 = 9 => k = \(\pm\)3
Với k = 3 => \(\left\{{}\begin{matrix}x=15\\y=21\\z=9\end{matrix}\right.\) hay x+y+z = 45
Với k = -3 => \(\left\{{}\begin{matrix}x=-15\\y=-21\\x=-9\end{matrix}\right.\)hay x+y+z = -45
Pt đầu tương đương: \(\sqrt[3]{x^2}+2\sqrt[3]{y^2}+4\sqrt[3]{z^2}=7\)
Pt 2 tương đương:
\(\left(xy^2+z^4\right)^2-\left(xy^2-z^4\right)^2=4\)
\(\Leftrightarrow4xy^2z^4=4\)
\(\Leftrightarrow xy^2z^4=1\) (1)
Quay lại pt đầu, áp dụng AM-GM:
\(7=\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}+\sqrt[3]{z^2}+\sqrt[3]{z^2}+\sqrt[3]{z}\ge7\sqrt[7]{\sqrt[3]{x^2}.\sqrt[3]{y^4}.\sqrt[3]{z^8}}\)
\(\Leftrightarrow\sqrt[21]{x^2y^4z^8}\le1\)
\(\Leftrightarrow x^2y^4z^8\le1\)
\(\Rightarrow\left|xy^2z^4\right|\le1\Rightarrow xy^2z^4\le1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x^2=y^2=z^2\\xy^2z^4=1\\x>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=\pm1\\z=\pm1\end{matrix}\right.\)
Các bộ thỏa mãn là: \(\left(1;1;1\right);\left(1;1;-1\right);\left(1;-1;1\right);\left(1;-1;-1\right)\)