Tìm x thõa mãn điều kiện
\(\left(x-10\right)^2-|10-x|=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
/x-1/-3<10 <=> /x-1/<13
=> /x-1/ thuộc {0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12}
=> x={1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13}
Ta có: |x-1| - 3 < 10
<=> |x-1| < 13
<=>\(\orbr{\begin{cases}X-1< 13\\1-X< 13\end{cases}}\) =>\(\orbr{\begin{cases}X< 14\\X>-12\end{cases}}\)
=> Tổng các số nguyên x thỏa mãn x là 25
Nếu xy = 10 thì xy phải là : 1x10 , 5x2 .
Thỏa mãm x - y = 3 thì phải 5x2 vì 5-2=3
nếu xy = 10 thì chỉ có 1x10 hoặc 5x2
thỏa mãn x-y=3 thì chỉ có 5x2 vì 5-2=3
Với y nguyên thì \(2y^2-1\ne0\), Từ phương trình đề cho suy ra
\(x=\frac{y^4}{2y^2-1}\). Để x nguyên thì :
\(y^4⋮2y^2-1\)
\(\Leftrightarrow8y^4⋮2y^2-1\)
\(\Leftrightarrow2.\left(4y^4-1\right)+2⋮2y^2-1\)
\(\Leftrightarrow2\left(2y^2-1\right)\left(2y^2+1\right)+2⋮2y^2-1\)
\(\Leftrightarrow2y^2-1\inƯ\left(2\right)=\left\{-1,1,-2,2\right\}\)
\(\Leftrightarrow2y^2\in\left\{0,2,-1,3\right\}\)
\(\Leftrightarrow y\in\left\{0,1,-1\right\}\) ( Do y nguyên )
Với \(y=0\Rightarrow x=0\)
Với \(y=1\Rightarrow x=1\)
Với \(y=-1\Rightarrow x=1\)
Nhanh mình kích cho 2sp
Vì \(\left(x-10\right)^2\ge0\forall x\inℝ\)
\(\left|10-x\right|\ge0\forall x\inℝ\)
\(\Rightarrow\left(x-10\right)^2-\left|10-x\right|\ge0\forall x\inℝ\)
\(\Rightarrow\left(x-10\right)^2-\left|10-x\right|=0\)\(\Leftrightarrow\orbr{\begin{cases}\left(x-10\right)^2=0\\\left|10-x\right|=0\end{cases}\Rightarrow}\orbr{\begin{cases}x-10=0\\10-x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=10\\x=10\end{cases}}\)
Vậy x = 10
P/s: E lp 5 nên làm đại -_- Ko chắc