Cho a,b thuộc Z: ( a +5 ) chia hết cho 7
cmr: 5a + 4b chia hết cho 7
Mệnh đề đảo lại có đúng không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a+5b chia hết cho 7
=> 10(a+5b) chia hết cho 7
Ta có: 10(a+5b)-(10a+b)
=10a+50b-10a-b
=49b
mà 49b chia hết cho 7
=> 10a+b chia hết cho 7
mệnh đề đảo lại vẫn đúng
đặt A=5(10a+b)-(a+5b)
=50a+5b-a-5b
=49a
do 49 chia hết cho 7
=>A chia hết cho 7 nên:
nếu a+5b chia hết cho 7=>5(10a+b) chia hết cho 7 , (5,7)=1=>10a+b chia hết cho 7(1)
nếu 10+b chia hết cho 7=>5(10a+b) chia hết cho 7=>a+5b chia hết cho 7(2)
từ 1 và 2=> nếu a+5b chia hết cho 7 thì 10a+b chia hết cho 7, mệnh đề này đảo lại cũng đúng
Nghĩa là 10a + b chia hết cho 7 CMR a +5b chia hết cho 7 phải không?
a+4b chia hết cho 17 => 7(a+4b)=7a+28b=7a-6b+34b chia hết cho 17
Mà 34b chia hết cho 17 => 7a-6b chia hết cho 17 (dpcm)
Ngược lại
7a-6b chia hết cho 17 => 5(7a-6b)=35a-30b=34a-34b+a+4b chia hết cho 17
Mà 34a-34b chia hết cho 17 nên (a+4b) chia hết cho 17 (dpcm)
Bài làm:
Đặt A =m5(10a + b) - (a + 5b)
= 50a + 5b - a - 5b
= 49a
Do 49 chia hết cho 7
=> A chia hết cho 7 nên:
Nếu a + 5b chia hết cho 7 => 5(10a + b) chia hết cho 7, (5, 7) = 1 => 10a + b chia hết cho 7 (1)
Nếu 10 + b chia hết cho 7 => 5(10a + b) chia hết cho 7 => a + 5b chia hết cho 7 (2)
Từ (1) và (2) ta được quyền suy ra: Nếu a + 5b chia hết cho 7 thì 10a + b chia hết cho 7, mệnh đề này đảo lại cũng đúng.
ta có
(a+5b) chia hết cho 7
-> 10 (a+5b) chia hết cho 7
-> 10a+50b chia hết cho 7
-> 10a+b+49b chia hết cho 7
-> 10a+b chia hết cho 7 vì 49b chia hết cho7
ta có
10a+b chia hết cho7
->10 a +50b-49b chia hết cho7
->10(a+5b) -49b chia hết cho 7
-> 10(a+5b) chia hết cho 7
vậy mệnh de dao nguoc k dung
A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)
Ta lại có:
(6a + 8b) + (a + 6b)
=(6a + a) + (8b + 6b)
=7a + 14b
=7a + 7 . 2 . b
=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)
⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))
⇒(a + 6b) ⋮ 7 (ĐPCM)
Vậy...
Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!
B) Làm tương tự câu a ta được:
(a+6b); (2a+5b); (3a+4b); (4a+3b); (5a+2b); (6a+b) đều chia hết cho 7 ⇒(a+6b).(2a+5b).(3a+4b).(4a+3b).(5a+2b).(6a+b) chia hết cho 7.7.7.7.7.7 ⇒(a+6b).(2a+5b).(3a+4b).(4a+3b).(5a+2b).(6a+b) chia hết cho 76 (ĐPCM)
Vậy...
A)Ta có: (3a + 4b) ⋮ 7 ⇒ 2 . (3a + 4b) ⋮ 7 ⇒ (6a + 8b) ⋮ 7 (1)
Ta lại có:
(6a + 8b) + (a + 6b)
=(6a + a) + (8b + 6b)
=7a + 14b
=7a + 7 . 2 . b
=7 . (a + 2b) ⋮ 7 (vì 7 ⋮ 7)
⇒(6a + 8b) + (a + 6b) ⋮ 7 mà (6a + 8b) ⋮ 7 (theo (1))
⇒(a + 6b) ⋮ 7 (ĐPCM)
Vậy...
Xin lỗi anh nhưng câu B) em không hiểu lắm ạ!
Ta co:\(\hept{\begin{cases}2a+b⋮13\\5a-4b⋮13\end{cases}\Rightarrow\hept{\begin{cases}-2.\left(2a+b\right)⋮13\\5a-4b⋮13\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}-4a-2b⋮13\\5a-4b⋮13\end{cases}}\Rightarrow-4a-2b+5a-4b=a-6b\)