Rút gọn : \(P=\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
\(P=\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}=\left|\sqrt{2}+\sqrt{5}+\sqrt{7}\right|=\sqrt{2}+\sqrt{5}+\sqrt{7}\)
Ta có
\(P=\sqrt{14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}}\)
\(\Leftrightarrow P=\sqrt{\left(\sqrt{5}+\sqrt{2}+\sqrt{7}\right)^2}\)
\(\Leftrightarrow P=\sqrt{5}+\sqrt{2}+\sqrt{7}\)
Mà \(P=\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{5}+\sqrt{2}+\sqrt{7}\)
Suy ra \(a+b+c=5+2+7=14\)
\(A=4-\sqrt{21-8\sqrt{5}}=4-\sqrt{4^2-8\sqrt{5}+\left(\sqrt{5}\right)^2}.\)
\(A=4-\sqrt{\left(4-\sqrt{5}\right)^2}=4-\left(4-\sqrt{5}\right)\)
=> \(A=\sqrt{5}\)
P=\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)=\(\sqrt{2+5+7+2\sqrt{5.2}+2\sqrt{2.7}+2\sqrt{3.5}}\)
=\(\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}\)=\(\sqrt{2}+\sqrt{5}+\sqrt{7}\)=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\)
Vậy a+b+c=14
\(\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}\)
\(=\sqrt{2+5+7+2\sqrt{2.5}+2\sqrt{2.7}+2\sqrt{5.7}}\)
\(=\sqrt{\left(\sqrt{2}+\sqrt{5}+\sqrt{7}\right)^2}=\sqrt{2}+\sqrt{5}+\sqrt{7}\)
\(\Rightarrow a+b+c=2+5+7=14\)
Lời giải:
\(P=\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}=\sqrt{14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}}\)
\(=\sqrt{(7+2\sqrt{7.5}+5)+2(\sqrt{10}+\sqrt{14})+2}\)
\(=\sqrt{(\sqrt{7}+\sqrt{5})^2+2\sqrt{2}(\sqrt{5}+\sqrt{7})+(\sqrt{2})^2}\)
\(=\sqrt{(\sqrt{5}+\sqrt{7}+\sqrt{2})^2}=\sqrt{5}+\sqrt{7}+\sqrt{2}\)