K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

Đặt A =\(\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+...+\frac{127}{128}-6\)

\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{128}\right)-6\)

\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{2^3}\right)+...+\left(1-\frac{1}{2^7}\right)-6\)(7 cặp số)

\(1-\frac{1}{2}+1-\frac{1}{2^2}+1-\frac{1}{2^3}+...+1-\frac{1}{2^7}-6\)

\(\left(1+1+1+...+1\right)-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^7}-6\)

\(1.7-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)-6\)

\(7-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)-6\)

\(7-6-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)

\(1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)

=> 2A = \(2-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\)

Lấy 2A - A = \(\left(2-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\right)-\left(1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\right)\)

              A  = \(2-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^6}-1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\)

                  = \(2-1-1+\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^6}\right)\)

                  = \(0+\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^3}+...+\frac{1}{2^6}-\frac{1}{2^6}+\frac{1}{2^7}\right)\)

                  = \(0+\frac{1}{2^7}\)

                  = \(\frac{1}{2^7}\)

9 tháng 8 2017

\(\frac{\frac{1}{4}+\frac{1}{24}+\frac{1}{124}}{\frac{3}{4}+\frac{3}{24}+\frac{3}{124}}+\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{127}}{\frac{3}{7}+\frac{3}{17}+\frac{3}{127}}=\frac{\frac{1}{4}+\frac{1}{24}+\frac{1}{124}}{3\left(\frac{1}{4}+\frac{1}{24}+\frac{1}{124}\right)}+\frac{2\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{127}\right)}{3\left(\frac{1}{7}+\frac{1}{17}+127\right)}=\frac{1}{3}+\frac{2}{3}=\) \(1\)

17 tháng 8 2018

C = 1/3 + -3/4 + 3/5 + 1/57 + -1/36 + 1/15 + -2/9

C = ( 1/3 + 1/57 ) + ( -3/4 + -1/36 ) + ( 3/5 + 1/15 ) + -2/9 

C = ( 19/57 + 1/57 ) + ( -27/36 + -1/36 ) + ( 9/15 + 1/15 ) + -2/9 

C = 20/57 + -28/36 + 10/15 + -2/9 

C = 20/57 + -7/9 + 2/3 + -2/9

C = ( 20/57 + 2/3 ) + ( -7/9 + -2/9 )

C = 58/57 + -1 

C = 1/57

D = 1/2 + -1/5 + -5/7 + 1/6 + -3/35 + 1/3 + 1/41

D = ( 1/2 + 1/3 + 1/6 ) + ( -1/5 + -5/7 +-3/35 ) + 1/41

D = ( 3/6 + 2/6 + 1/6 ) + ( -7/35 + -25/35 + -3/35 ) + 1/41

D = 1 + -1 + 1/41

D = 1/41

E = -1/2 + 3/5 + -1/9 + 1/127 + -7/18 + 4/35 + 2/7 

E = ( -1/2 + -1/9 + -7/18 ) + ( 3/5 + 4/35 ) + 1/127 + 2/7

E = ( -9/18 + -2/18 + -7/18 ) + ( 21/35 + 4/35 ) + 1/127 + 2/7

E = -1 + 5/7 + 1/257 + 2/7 

E = -1 + ( 5/7 + 2/7 ) + 1/127

E = -1 + 1 + 1/127

E = 1/127

17 tháng 8 2018

\(C=\frac{1}{3}+\frac{-3}{4}+\frac{3}{5}+\frac{1}{57}+\frac{-1}{36}+\frac{1}{15}+\frac{-2}{9}.\)

\(C=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)-\left(\frac{3}{4}+\frac{1}{36}+\frac{2}{9}\right)+\frac{1}{57}\)

\(C=1-1+\frac{1}{57}\)

\(C=\frac{1}{57}\)

2 tháng 8 2015

\(=\frac{5\left(\frac{1}{3}+\frac{1}{8}-\frac{1}{7}\right)}{-4\left(\frac{1}{3}+\frac{1}{8}-\frac{1}{7}\right)}:\frac{2\left(\frac{1}{3}-\frac{1}{12}+\frac{3}{7}\right)}{ }\)

MÃu thứ hai sao ý 

2 tháng 8 2015

 lưu tuấn ngiaz  nơi đúng 

11 tháng 8 2019

Đặt P = ... ( biểu thức đề bài ) 

Nhận xét: Với \(k\inℕ^∗\) ta có: 

\(\frac{k+2}{k!+\left(k+1\right)!+\left(k+2\right)!}=\frac{k+2}{k!+\left(k+1\right).k!+\left(k+2\right).k!}=\frac{k+2}{2.k!\left(k+2\right)}=\frac{1}{2.k!}\)

\(\Rightarrow\)\(P=\frac{1}{2.1!}+\frac{1}{2.2!}+...+\frac{1}{2.6!}=\frac{1}{2}\left(1+\frac{1}{2}+...+\frac{1}{720}\right)=...\)

29 tháng 10 2023

5và 3/8-1 và 5/6

 

18 tháng 5 2015

Cho A = 1 + 2 + 22 + 23 + ... + 22008

->  2A = 2 + 22 + 23 + 24 +...+ 22009 

-> 2A - A = (  2 + 22 + 23 + 24 +...+ 22009 ) - ( 1 + 2 + 22 + 23 + ... + 22008 )

->       A = \(2^{2009}-1=-\left(1-2^{2009}\right)\)

S =  \(\frac{-\left(1-2^{2009}\right)}{1-2^{2009}}\)=-1

16 tháng 7 2016

\(-\frac{1}{2}-\left(-\frac{3}{5}\right)+\left(-\frac{1}{9}\right)+\frac{1}{127}-\frac{7}{18}+\frac{4}{35}-\left(-\frac{2}{7}\right)\)

\(=-\frac{1}{2}+\frac{3}{5}-\frac{1}{9}+\frac{1}{127}-\frac{7}{18}+\frac{4}{35}+\frac{2}{7}\)

\(=\left(-\frac{1}{2}-\frac{1}{9}-\frac{7}{18}\right)+\left(\frac{3}{5}+\frac{4}{35}+\frac{2}{7}\right)+\frac{1}{127}\)

\(=\left(-\frac{9}{18}-\frac{2}{18}-\frac{7}{18}\right)+\left(\frac{21}{35}+\frac{4}{35}+\frac{10}{35}\right)+\frac{1}{127}\)

\(=\frac{-18}{18}+\frac{35}{35}+\frac{1}{127}=-1+1+\frac{1}{127}=\frac{1}{127}\)

9 tháng 3 2017

a) \(\frac{1}{9}\)

b) -1100