K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2020

VBKFLBIGKMBKMMNDFKGJRTKKGHBNFKGJGJRIUGRIO;;HGTHI

19 tháng 1 2017

\(A=2x^2+16y^2+\frac{2}{x}+\frac{3}{y}\)

\(\frac{A}{2}=B=x^2+8y^2+\frac{1}{x}+\frac{3}{2y}=x^2+2z^2+\frac{1}{x}+\frac{3}{z}\)(x+z>=2)

\(B=\left(x-z\right)^2+\left(xz+xz+\frac{1}{z}+\frac{1}{x}\right)+\left(z^2+\frac{1}{z}+\frac{1}{z}\right)\)

\(\left(x-z\right)\ge0\) đẳng thức khi x=z

2 tháng 11 2018

HD (thầy Minh): Ta có:  

1 tháng 11 2016

x^3-y^2=xy
=>(1) x(x^2-y)=y^2
x,y là các số tự nhiên => x^2-y là ước của y^2 => x^2 là ước của y^2 => x là ước của y => y=ax
=>(2) x^3=y(x+y)
=> x^3=ax(x+ax)=x^2.a.(a+1)
=> x=a(a+1)
Vậy x là tích 2 số tự nhiên liên tiếp; x,y có 2 chữ số.
a=1 => x=2 (loại)
a=2 => x=6 (loại)
a=3 => x=12 => y=36 (chọn)
a=4 => x=20 => y=80
(chọn)
a=5 => x=30 => y=150 (loại)
a>=5 thì y>100 => (loại)

Vậy (x,y)=(12,36) hoặc (x,y)=(20,80)

5 tháng 11 2016

Đúng 1

18 tháng 12 2014

9x2 + y2 + z2 - 36x - 16y + 10z = - 125

\(\Leftrightarrow\)9x2 - 36x + 36 + y2 - 16y + 64 + z2 + 10z + 25 = 0

\(\Leftrightarrow\) ( 3x - 6 )2 + ( y - 8 )2 + ( z + 5 )2 = 0

Từ đó suy ra x, y, z

 

NV
20 tháng 3 2022

\(\Leftrightarrow\sqrt{9x^2+16x+96}=3x-16y-24\)

Vế phải nguyên \(\Rightarrow\) vế trái nguyên

\(\Rightarrow9x^2+16x+96=k^2\)

\(\Rightarrow81x^2+144x+864=\left(3k\right)^2\)

\(\Leftrightarrow\left(9x+8\right)^2+800=\left(3k\right)^2\)

\(\Leftrightarrow\left(3k-9x-8\right)\left(3k+9x+8\right)=800\)

Pt ước số thật kinh dị với số ước của 800 

21 tháng 3 2022

Ta có \(9x^2+16x+96=\left(3x-24-16y\right)^2\)

\(\Leftrightarrow9x^2+16x+96=9x^2-6x\left(16y+24\right)+\left(16y+24\right)^2\)\(\Leftrightarrow16x+96=\left(16y+24\right)\left(16y+24-6x\right)\)

\(\Leftrightarrow8\left(2x+12\right)=4\left(4y+6\right).2\left(8y+12-3x\right)\)

\(\Leftrightarrow2x+12=\left(4y+6\right)\left(8y+12-3x\right)\)\(\Leftrightarrow2x+12=32y^2+48y-12xy+48y+72-18x\)

\(\Leftrightarrow32y^2+96y-12xy-20x+60=0\)\(\Leftrightarrow32y^2+96y+60=12xy+20x\)\(\Leftrightarrow8y^2+24y+15=3xy+5x\)

\(\Leftrightarrow8y^2+24y+15=x\left(3y+5\right)\)\(\Leftrightarrow x=\dfrac{8y^2+24y+15}{3y+5}\)

\(\Leftrightarrow9x=\dfrac{9\left(8y^2+24y+15\right)}{3y+5}=\dfrac{72y^2+216y+135}{3y+5}\)\(=\dfrac{\left(72y^2+120y\right)+\left(96y+160\right)-25}{3y+5}\)\(=24y+32-\dfrac{25}{3y+5}\)

\(\Leftrightarrow24y+32-\dfrac{25}{3y+5}\in Z\)\(\Rightarrow3y+5\in U\left(25\right)=\left\{\pm1,\pm5,\pm25\right\}\)\(\Leftrightarrow3y\in\left\{-4,-6,-10,0,-30,20\right\}\)\(\Rightarrow y\in\left\{-2,-10,0\right\}\)

+) Với y=-2=> x=1

+) với y=-10=> x=-23    

Vậy pt cho 2 cặp (x,y) nguyên =(1,-2),(-23,-10)