K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 7 2019

Lời giải:
PT \(\Rightarrow \left\{\begin{matrix} x\leq 3\\ 2x^2+mx=(3-x)^2=x^2-6x+9\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 3\\ x^2+(m+6)x-9=0(1)\end{matrix}\right.\)

Với (1):

$\Delta=(m+6)^2+36$ nên PT(1) luôn có 2 nghiệm phân biệt với mọi $m$. Để PT ban đầu có duy nhất 1 nghiệm thì PT (1) phải có 1 nghiệm $x_1\leq 3$, nghiệm còn lại $x_2>3$

Điều này xảy ra khi mà :

\((x_1-3)(x_2-3)\leq 0\)

\(\Leftrightarrow x_1x_2-3(x_1+x_2)+9\leq 0\)

\(\Leftrightarrow -9-3(-m-6)+9\leq 0\Leftrightarrow 3(m+6)\leq 0\Leftrightarrow m\leq -6\)

18 tháng 3 2022

à bài này a nhớ (hay mất điểm ở bài này) ;v

gòi a làm hộ e hong đây .-.

Mai nộp gòi mà chưa lmj :<

4 tháng 1 2020

a) 2x-mx+2m-1=0

\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)

*Nếu \(m=2\)thay vào (1) ta được:

\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)

Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.

*Nếu \(m\ne2\)thì phương trình (1) có nghiệm  \(x=\frac{1-2m}{2-m}\)

Vậy  \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)

b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé 

b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)

*Nếu \(m\ne2\).....pt có ngiệm x=m+2

*Nếu \(m=2\)....pt có vô số nghiệm

Vậy ....

c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)

Nếu \(m=2\).... pt có vô số nghiệm

Nếu \(m=-2\)..... pt vô nghiệm

Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)

Để nghiệm  \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)

Vậy m<-2

b: Để hệ có nghiệm duy nhất thì \(\frac{1}{m}<>\frac{1}{-1}\)

=>m<>-1

c: Để hệ có nghiệm duy nhất thì m<>-1

\(\begin{cases}x+y=2\\ mx-y=1\end{cases}\Rightarrow\begin{cases}x+y+mx-y=2+1=3\\ x+y=2\end{cases}\)

=>\(\begin{cases}x\left(m+1\right)=3\\ x+y=2\end{cases}\Rightarrow\begin{cases}x=\frac{3}{m+1}\\ y=2-x=2-\frac{3}{m+1}=\frac{2m+2-3}{m+1}=\frac{2m-1}{m+1}\end{cases}\)

x-3y=5

=>\(\frac{3}{m+1}-\frac{3\left(2m-1\right)}{m+1}=5\)

=>3-3(2m-1)=5(m+1)

=>3-6m+3=5m+5

=>-6m+6=5m+5

=>-11m=-1

=>\(m=\frac{1}{11}\) (nhận)

d: xy<0

=>\(\frac{3}{m+1}\cdot\frac{2m-1}{m+1}<0\)

=>3(2m-1)<0

=>2m-1<0

=>\(m<\frac12\)

Kết hợp với m<>-1, ta được: \(\begin{cases}m<\frac12\\ m<>-1\end{cases}\)

e: x+2y>4

=>\(\frac{3}{m+1}+\frac{2\left(2m-1\right)}{m+1}>4\)

=>3+2(2m-1)>4(m+1)

=>3+4m-2>4m+4

=>1>4(sai)

=>m∈∅

f: Để x,y nguyên thì 3⋮m+1 và 2m-1⋮m+1

=>3⋮m+1 và 2m+2-3⋮m+1

=>3⋮m+1 và -3⋮m+1

=>3⋮m+1

=>m+1∈{1;-1;3;-3}

=>m∈{0;-2;2;-4}

a: Th1: m=0

=>-2x-1=0

=>x=-1/2

=>NHận

TH2: m<>0

Δ=(-2)^2-4m(m-1)=-4m^2+4m+4

Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0

=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)

b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0

=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)

21 tháng 2 2020

a, mx - 2x + 3 = 0

m = -4

<=> -4x - 2x + 3 = 0

<=> -6x = -3

<=> x = 1/2

b, mx - 2x + 3 = 0 

x = 2

<=> 2m - 2.2 + 3 =0

<=> 2m - 1 = 0

<=>  m = 1/2