Cho các số thực a,b,c thỏa mãn (a+b)(b+c)(c+a)= abc và (a^3+b^3)(b^3+c^3)(c^3+a^3)=(abc)^3. CMR: abc=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+c^3=\dfrac{3}{abc}\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3+\dfrac{1}{c^3}-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{3}{abc}=0\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2-\dfrac{1}{c}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{1}{c^2}\right)-\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=0\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{1}{ab}-\dfrac{1}{bc}-\dfrac{1}{ca}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b=c\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\end{matrix}\right.\)
Đề bài thiếu, cần thêm dữ liệu "a;b;c phân biệt"
Khi đó \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
Mình có cách này,không chắc lắm:
\(VT=\frac{a}{a\left(a^2+bc+1\right)}+\frac{b}{b\left(b^2+ac+1\right)}+\frac{c}{c\left(c^2+ab+1\right)}\) (làm tắt,bạn tự hiểu nha)
\(=\frac{1}{a^2+bc+1}+\frac{1}{b^2+ac+1}+\frac{1}{c^2+ab+1}\)
\(\le\frac{1}{3}\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)\)
\(=\frac{1}{3}\left[\left(1+1+1\right)-\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\right]\)
\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)
Áp dụng BĐT Cô si với biểu thức trong ngoặc:
\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)
\(\le1-\sqrt[3]{\left(\sqrt[3]{a}-1\right)\left(\sqrt[3]{b}-1\right)\left(\sqrt[3]{c-1}\right)}\le1^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = c = 1
Ta c/m bđt sau:
\(a^3+1\ge a^2+a\)
\(\Leftrightarrow a^3+1-a^2-a\ge0\Leftrightarrow a\left(a^2-1\right)-\left(a^2-1\right)\ge0\Leftrightarrow\left(a-1\right)^2\left(a+1\right)\ge0\)
\(\Rightarrow\frac{a}{a^3+a+1}\le\frac{a}{a^2+2a}=\frac{1}{a+2}\)
\(\Rightarrow\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\le\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)
Đặt \((a,b,c)\rightarrow(\frac{x}{y},\frac{y}{z},\frac{z}{x})\)
\(\Rightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}=\frac{1}{2}\left(1-\frac{x}{x+2y}+1-\frac{y}{y+2z}+1-\frac{z}{z+2x}\right)=\frac{3}{2}-\frac{1}{2}\left(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xy}\right)\)\(\le\frac{3}{2}-\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\right)=\frac{3}{2}-\frac{1}{2}.\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu bằng xảy ra khi a=b=c=1
\(a+b+c=0\) nên trong 3 số a;b;c phải có ít nhất 1 số dương
Do vai trò của 3 biến như nhau, ko mất tính tổng quát, giả sử \(c>0\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(a^3+b^3+c^3=a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)=\left(-c\right)^3+c^3-3ab\left(-c\right)=3abc=-6\)
\(\Rightarrow F=\dfrac{ab+bc+ca-\left(a^2+b^2+c^2\right)}{-6}=\dfrac{3\left(ab+bc+ca\right)}{-6}=\dfrac{ab+bc+ca}{-2}\)
\(=\dfrac{-\dfrac{2}{c}+c\left(a+b\right)}{-2}=\dfrac{-\dfrac{2}{c}+c\left(-c\right)}{-2}=\dfrac{c^2}{2}+\dfrac{1}{c}=\dfrac{c^2}{2}+\dfrac{1}{2c}+\dfrac{1}{2c}\ge3\sqrt[3]{\dfrac{c^2}{8c^2}}=\dfrac{3}{2}\)
\(F_{min}=\dfrac{3}{2}\) khi \(\left(a;b;c\right)=\left(-2;1;1\right)\) và các hoán vị
Ta có: (a+b+c)2=a2+b2+c2
<=>a2+b2+c2+2ab+2bc+2ca=a2+b2+c2
<=>ab+bc+ca=0
<=>\(\frac{ab+bc+ca}{abc}=0\)
<=>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
<=> \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\) (1)
<=> \(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
<=>\(\frac{1}{a^3}+\frac{3}{a^2b}+\frac{3}{ab^2}+\frac{1}{b^3}=-\frac{1}{c^3}\)
<=>\(\frac{1}{a^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{b^3}=-\frac{1}{c^3}\) (2)
Thay (1) vào (2) ta đc:
\(\frac{1}{a^3}-\frac{3}{abc}+\frac{1}{b^3}=-\frac{1}{c^3}\)
<=>\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\left(đpcm\right)\)
toán lớp 7 có cái này hả??
Ta có:\((a+b+c)^2=a^2+b^2+c^2\)
<=>\(a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)
<=>\(ab+ac+bc=0\)
Phân tích ngược từ chứng minh. Lưu ý: cách này chỉ trình bày ngoài nháp rồi mới trình bày từ duới lên
Nếu \({1\over a^3} + {1\over b^3} +{1\over c^3}={3\over abc}\)
Nhân với abc cả hai vế
\({abc\over a^3} + {abc\over b^3} +{abc\over c^3}=3\)
<=>\({bc\over a^2} + {ac\over b^2} +{ab\over c^2}=3\)
mà ab+ac+bc=0
=>\({-(ac+ab)\over a^2} + {-(bc+ba)\over b^2} +{-(ac+bc)\over c^2}=3\)
<=>\({-a(c+b)\over a^2} + {-b(c+a)\over b^2} +{-c(a+b)\over c^2}-3=0\)
<=>\({c+b\over a} + {c+a\over b} +{a+b\over c}+3=0\)
<=>\({c+b\over a} +1+ {c+a\over b} +1+{a+b\over c}+1=0\)
<=>\({c+b+a\over a} ++ {c+a+b\over b} +{a+b+c\over c}=0\)
<=>\((a+b+c)({1\over a}+{1\over b}+{1\over c})=0\)
tới đây không phải là ta có được 2 vế trên =0 . Mà phải chứng minh 1 trong 2 vế trên bằng 0
Ta có \(ab+ac+bc=0\)(1)
mà a,b,c khác 0 theo đề bài nên ta có quyền chia abc cho vế (1)
=>\({ab\over abc}+{cb\over abc}+{ac\over abc}=0\)
=>\({1\over a}+ {1\over b}+ {1\over c}=0\)
Vậy từ dữ kiện ta có thể suy ngược lại tất cả nãy giờ ta chúng minh được
Có : a + b + c = 0
=> (a + b)5 = (-c)5
a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5 = -c5
a5 + b5 + c5 = -5a4b - 10a3b2 - 10a2b3 - 5ab4
a5 + b5 + c5 = -5ab(a3 + 2a2b + 2ab2 + b3)
a5 + b5 + c5 = -5ab[(a3 + b3) + (2a2b + 2ab2)]
a5 + b5 + c5 = -5ab[(a + b)(a2 - ab + b2) + 2ab(a + b)]
a5 + b5 + c5 = -5ab(a + b)(a2 + b2 + ab)
a5 + b5 + c5 = 5abc(a2 + b2 + ab) (do a+b+c=0=> a+b=-c)
2(a5 + b5 + c5) = 5abc(2a2 + 2b2 + 2ab)
2(a5 + b5 + c5) = 5abc[a2 + b2 +(a2 + 2ab + b2)]
2(a5 + b5 + c5) = 5abc[a2 + b2 + (a + b)2]
2(a5 + b5 + c5) = 5abc(a2 + b2 + c2) (do a+b=-c=> (a +b )2 = c2
\(\Leftrightarrow\) \(a^5+b^5+c^5=\dfrac{5}{2}abc\left(a^2+b^2+c^2\right)\)
Vậy...
Bài này đã có ở đây:
Cho abc=1CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\) - Hoc24