1
a) Cho các số thực dương a,b thỏa mãn : a100+b100=a101+b101=a102+b102.Tính giá trị biểu thức P=a2004+b2004
b) với mỗi số nguyên dương n , Pn=1.2.3...n (tích các số tự nhiên liên tiếp đến n).Chứng minh 1+1.P1+2P2+3P3+...+n.Pn=Pn+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a^{100}+b^{100}\right)\cdot ab=a^{101}\cdot b+b^{101}\cdot a\)
\(\left(a^{101}+b^{101}\right)\cdot\left(a+b\right)=a^{102}+a^{101}\cdot b+b^{101}\cdot a+b^{102}\)
Do đó: \(\left(a^{101}+b^{101}\right)\left(a+b\right)-\left(a^{100}+b^{100}\right)\cdot ab\)
\(=a^{102}+b\cdot a^{101}+a\cdot b^{101}+b^{102}-a^{101}\cdot b-b^{101}\cdot a\)
\(=a^{102}+b^{102}\)
Kết hợp đề bài, ta có:
\(\left(a^{102}+b^{102}\right)\left(a+b\right)-\left(a^{102}+b^{102}\right)\cdot ab=a^{102}+b^{102}\)
\(\Leftrightarrow a+b-ab=1\)
\(\Leftrightarrow a+b-ab-1=0\)
\(\Leftrightarrow\left(a-1\right)+b\left(1-a\right)=0\)
\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-1=0\\1-b=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
Vậy: \(P=a^{2004}+b^{2004}=1^{2004}+1^{2004}=2\)
Lời giải:
$a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}$
$\Rightarrow (a^{101}+b^{101})^2=(a^{100}+b^{100})(a^{102}+b^{102})$
$\Rightarrow a^{202}+b^{202}+2a^{101}.b^{101}=a^{202}+b^{202}+a^{100}b^{102}+a^{102}b^{100}$
$\Rightarrow 2a^{101}b^{101}=a^{100}b^{102}+a^{102}b^{100}$
$\Rightarrow a^{100}b^{100}(a^2+b^2-2ab)=0$
$\Rightarrow a^{100}b^{100}(a-b)^2=0$
$\Rightarrow a=0$ hoặc $b=0$ hoặc $a=b$
Nếu $a=0$ thì:
$b^{100}=b^{101}=b^{102}$
$\Rightarrow b^{100}(b-1)=0$
$\Rightarrow b=0$ hoặc b=1$ (đều tm)
$\Rightarrow a^{2022}+b^{2023}=0$ hoặc $1$
Nếu $b=0$ thì tương tự, $a=0$ hoặc $a=1$
$\Rightarrow a^{2022}+b^{2023}=0$ hoặc $1$
Nếu $a=b$ thì thay $a=b$ vào điều kiện đề thì:
$2b^{100}=2b^{101}=2b^{102}$
$\Rightarrow b^{100}=b^{101}=b^{102}$
$\Rightarrow b^{100}(b-1)=0$
$\Rightarrow b=0$ hoặc $b=1$ (đều tm)
Nếu $a=b=0\Rightarrow a^{2022}+b^{2023}=0$
Nếu $a=b=1\Rightarrow a^{2022}+b^{2023}=2$
Vậy $a^{2022}+b^{2023}$ có thể nhận giá trị $0,1,2$
\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)
\(\Rightarrow\left(a^{100}+b^{100}\right)\left(a^{102}+b^{102}\right)=\left(a^{101}+b^{101}\right)^2\)
\(\Rightarrow a^{202}+b^{202}+a^{100}b^{102}+a^{102}b^{100}=a^{202}+b^{202}+2a^{101}b^{101}\)
\(\Rightarrow a^{100}b^{100}\left(a^2+b^2\right)=a^{100}b^{100}\left(2ab\right)\)
\(\Rightarrow a^2+b^2=2ab\)
\(\Rightarrow\left(a-b\right)^2=0\)
\(\Rightarrow a=b\)
Thế vào \(a^{100}+b^{100}=a^{101}+b^{101}\)
\(\Rightarrow a^{100}+a^{100}=a^{101}+a^{101}\)
\(\Rightarrow2a^{100}\left(a-1\right)=0\)
\(\Rightarrow a=1\Rightarrow b=1\)
\(\Rightarrow...\)
1.
\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)
\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)
\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)
Đặt \(xy=a\Rightarrow0< a\le1\)
\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)
\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)
\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)
\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)
\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)
\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)
Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)
2.
Đặt \(A=9^n+62\)
Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)
Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)
\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)
Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\) và \(6m+1\)
\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)
\(\Leftrightarrow36m^2=9^n+63\)
\(\Leftrightarrow4m^2=9^{n-1}+7\)
\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)
\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)
Pt ước số cơ bản, bạn tự giải tiếp
\(ab=cd\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow a=ck;b=dk\)
\(\Rightarrow ab=cd\Leftrightarrow cdk^2-cd=0\)
\(\Leftrightarrow cd\left(k^2-1\right)=0\Leftrightarrow k=\pm1\)
\(\left(+\right)k=1\Rightarrow\frac{a}{c}=\frac{b}{d}=1\Leftrightarrow a=c;b=d\)
\(\Rightarrow a^n+b^n+c^n+d^n=2a^n+2b^n\ge4\forall a,b>0\)
và \(2a^n+2b^n⋮2\Rightarrow a^n+b^n+c^n+d^n\)là hợp số
\(\left(+\right)k=-1\Rightarrow\frac{a}{c}=\frac{b}{d}=-1\Leftrightarrow a=-c;b=-d\)( vô lí )
Vì \(a,b,c,d>0\)
Vậy \(A=a^n+b^n+c^n+d^n\)là hợp số
Lớp 6 khó vậy sao?
ab=cd (*)
a=b=c=d=1 => A=4=2.2 đúng
a=[c,d]
b=[c,d]
a,b,c,d, vai trò như nhau
g/s a=c; b=d
A=2a^2+2b^2 =2.(a^2+b^2) => A hợp số
với a,b,c,d >1, và a,b,c,d khác nhau
ta có
đảm bảo (*)
( không tồn tại ab=cd khác nhau mà nguyên tố)
g/s a và c có ước lớn nhất p
ta có a=x.p và c=y.p ( do p lớn nhất => (x,y)=1)(**)
từ ab=cd=> x.p.b=y.p.d
từ (**)=> b=y.q và d=x.q
thay hết vào A
A=x^n .p^n+y^n.q^n^n+y^n.p^n+x^n.q^n =x^n(p^n+q^n)+y^n(p^n+q^n)=(x^n+y^n)(p^n+q^n)
A=B.C --> dpcm
Câu a)
Em tham khảo link: Câu hỏi của I have a crazy idea - Toán lớp 6 - Học toán với OnlineMath
Ta có bài toán
Pn-Pn-1=(n-1)Pn-1
Chứng minh
Ta có Pn-Pn-1=n!-(n-1)!
=n(n-1)!-(n-1)!
=(n-1)(n-1)!=(n-1)Pn-1
=>Pn-Pn-1=(n-1)Pn-1
Từ kết quả trên ta có
P2-P1=(2-1)P1
P3-P2=(3-1)P2
...............
Pn=Pn-1=(n-1)Pn-1
-----------------------------
Pn-P1=P1+2P2+3P3+.........+(n-1)P1
=>1+1.P1+2P2+3P3+...+n.Pn=Pn+1