Cho 2 đường thẳng AB và CD cắt nhau tại O thì tạo thành 4 góc ko kể góc bẹt
a, C/m rằng trog các góc nói trên tồn tại 2 góc có số đo ≤ 90o
b, Biết tổng của 3 trog 4 góc bằng 225o. Tính số đo của mỗi góc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Alex Queeny - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
Câu hỏi của Alex Queeny - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
a) Do góc O1 và O2 kề bù nên O1 + O2 = 180o
Giả sử góc O1 \(\le\) O2 => 2.O1 \(\le\) O1 + O2 = 180o => O1 \(\le\) 180o : 2 = 90o
Mà luôn có góc O1 = O3 (đối đỉnh)
Vậy Trong các góc trên có 2 góc có số đó nhỏ hơn hoặc bằng 90 độ
b) Lấy 3 góc bất kì trong 4 góc đó luôn có 2 góc kề bù
=> tổng hai đó bằng 180o
=> góc còn lại là: 225 - 180 = 45o
=> Góc kề bù với nó bằng 180o - 45o = 135o
Câu hỏi của Alex Queeny - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
Em tham khảo nhé!Câu hỏi của Alex Queeny - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
Câu hỏi của Alex Queeny - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Alex Queeny - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
a) Ta thấy : AOD + COA = 180 độ ( kề bù)
Giả sử AOD < COA
=> 2AOD < AOD + COA = 180 độ
=> AOD < 180 : 2 = 90 độ
Mà AOD = COB ( đối đỉnh)
=> Trong các góc trên có 2 góc có số đo là 90 độ
b) Trong 3 góc bất kì luôn luôn có 2 kề bù
=> Tổng 2 góc nó = 180 độ
=> Góc còn lại là : 225- 180 = 45 độ
Góc kề bù với nó là : 180 - 45 = 135 độ
a, Giả sử không tồn tại góc nào có số đo ≤ 90o
=> Cả 4 góc có số đo > 90o
=> Tổng số đo của 4 góc > 360o ( Vô lý )
Vậy tồn tại ít nhất 1 góc có số đo ≤ 90o mà góc này có góc đối đỉnh với nó
=> tồn tại 2 góc ≤ 90o ( đpcm )
b, Gỉa sử \(\widehat{O_1}+\widehat{O_2}+\widehat{O_3}=225^o\)
Mà \(\widehat{O_1}+\widehat{O_2}=180^o\)( 2 góc kề bù )
\(\Rightarrow\widehat{O_3}=225^o-180^o=45^o\)
Mà \(\widehat{O_1}=\widehat{O_3}\)( 2 góc đối đỉnh )
\(\Rightarrow\widehat{O_1}=45^o\)
Lại có: \(\widehat{O_1}+\widehat{O_2}=180^o\)
\(\Rightarrow45^o+\widehat{O_2}=180^o\)
\(\Rightarrow\widehat{O_2}=135^o\)
Mà \(\widehat{O_4}=\widehat{O_2}\)( 2 góc đối đình )
\(\Rightarrow\widehat{O_4}=135^o\)