Cho tam giác ABC vuông ở A , đường cao AH . HE vuông góc AB tại E . HF vuông góc AC tại F . Lấy O là trung điểm BC . AO cắt EF tại K . CMR :
\(\frac{1}{AK^2}=\frac{1}{HE^2}+\frac{1}{HF^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua A kẻ đường thẳng vuông góc với EF tại M, cắt BC tại N.Gọi I là giao của AH và EF.
CMR: góc IAE = góc IEA.
Có tam giác MAE vuông tại M => góc MAE + góc MEA= 90 độ Hay góc NAB + góc IEA = 90 độ
Có tam giác ABH vuông tại H => góc ABH + góc HAE= 90 độ Hay góc NBA + góc IAE = 90 độ
=> góc NAB= góc NBA (phụ với hai góc bằng nhau)
=> tam giác NAB cân tại N
=> NA=NB
CM: NA=NC
=> NB=NC
=> N là trung điểm của BC
=> N trùng với I, M trùng với K.
mà AM vuông góc với EF
=> AK vuông góc với EF
Xét tam giác AEF vuông tại A có AK là đường cao
=> 1/AK2 = 1/AE2 + 1/AF2
Cm AE=HF, EH=AF
=> đpcm
a) Do EM = EH và AE vuông góc MH tại E nên AB là đường trung trực của MH. Tương tự AC là trung trực HN.
b) Do AB là đường trung trực của MH nên AM = AH. Tương tự AH = AN
Vậy AM = AN hay tam giác AMN cân tại A.
c) Xét tam giác HMN có E, F lần lượt là trung điểm HM, HN nên EF là đường trung bình tam giác.
Vậy EF // MN.
d) Tam giác cân AMN có I là trung điểm MN nên \(AI⊥MN\)
Lại có MN //EF nên \(AI⊥EF.\)
a) Ta thấy AB vuông góc với MH tại trung điểm E của MH nên AB là đường trung trực của MH.
Ta thấy AC vuông góc với NH tại trung điểm F của NH nên AC là đường trung trực của NH.
b) Do AB là trung trực của MH nên AM = AH.
Tương tự AN = AH. Vậy nên AM = AN hay tam giác AMN cân tại A.
c) Xét tam giác HMN có E là trung điểm MH, F là trung điểm HN nên EF là đường trung bình tam giác HMN.
Suy ra EF // MN.
d) Do tam giác AMN cân tại A nên trung tuyến AI đồng thời là đường cao. Vậy AI vuông góc MN.
Lại có MN // EF nên AI vuông góc EF.
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>AH=EF
b: góc IFE=90 độ
=>góc IFH+góc EFH=90 độ
=>góc IFH+góc AHF=90 độ
=>góc IFH=góc IHF
=>IH=IF và góc IFC=góc ICF
=>IH=IC
=>I là trung điểm của HC
Xét ΔHAC có HO/HA=HI/HC
nên OI//AC và OI=AC/2
=>OI//AK và OI=AK
=>AOIK là hình bình hành
Ta có: \(\widehat{OAC}+\widehat{OAB}=90^0;\widehat{OAC}=\widehat{EAH}=\widehat{AEF}\)
⇒ \(\widehat{AEF}+\widehat{OAC}=90^0\)⇒ \(\widehat{AKE}=90^0\Rightarrow AK\perp EF\)
Dễ chứng minh AEHF là hình chữ nhật nên AE=HF; AF=HE
Áp dụng hệ thức lượng vào tam giác vuông AEF vuông tại A có AK⊥EF, ta có:
\(AK.EF=AE.AF\)⇒\(\frac{AK}{AE}=\frac{AF}{EF}\Rightarrow\frac{AK^2}{AE^2}=\frac{AF^2}{EF^2}\)\(=\frac{AK^2}{HF^2}\) (1)
\(\frac{AK}{AF}=\frac{AE}{EF}\Rightarrow\frac{AK^2}{AF^2}=\frac{AE^2}{EF^2}\)\(=\frac{AK^2}{HE^2}\) (2)
Cộng (1) với (2) ta có :
\(AK^2.\left(\frac{1}{HE^2}+\frac{1}{HF^2}\right)=\frac{AE^2+AF^2}{EF^2}=\frac{EF^2}{EF^2}=1\)
⇒ \(\frac{1}{AK^2}=\frac{1}{HE^2}+\frac{1}{HF^2}\)
sao góc OAC = góc EAH = góc AEF vậy bạn ?