x^2+11x+42=2X\(\sqrt{11x+42}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x(x+2)=x(x+3)
<-> x(x+2)-x(x+3)=0
<-> x(x+2-x-3)=0
<-> x(-1)=0
<-> x=0
Vậy x=0 là nghiệm của phương trình
a, x^2 + 2x - x^2 - 3x = 0
<=> -x = 0
<=> x = 0
b, 11x + 42 - 2x - 100 + 9x + 22 = 0
<=> 18x - 36 = 0
<=> 18x = 36
<=> x = 2
1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{11}=\dfrac{y-x}{11-8}=\dfrac{-42}{3}=-14\)
Do đó: x=-112;y=-154
câu a)
bạn lập bảng xét dấu
x -3/2 0
x - || - 0 +
2x+3 - 0 + || +
từ đó bạn xét từng trường hợp x< -3/2 và -3/2<x<0 và 0<x và bạn sẽ tìm được từng kết quả x
b)1/(x^2 + 13x + 42) = 1/((x+7)(x+6))
1/(x^2 + 11x + 30) = 1/((x+ 5)(x +6))
1/(x^2 + 9x + 20) = 1/((x + 5)(x+4))
chuyển 1/18 sang bạn sẽ có 1/((x+7)(x+6)) + 1/((x+ 5)(x +6)) + 1/((x + 5)(x+4)) - 1/18 = 0
mẫu số chung sẽ là 18(x+4)(x+5)(x+6)(x+7). quy đồng và rút gọn bạn sẽ có 1 biểu thức khá đẹp:
-(x^2 + 11x - 26)/(18(x+4)(x+7)) = 0.
giải phương trình -x^2 - 11x + 26 bạn sẽ có nghiệm là x = -13 và x = 2.
\(\left(x^2+11x+12\right)\left(x^2+9x+20\right)\left(x^2+13x+42\right)=36\left(x^2+11x+30\right)\left(x^2+11x+31\right)\)
\(\Leftrightarrow\left(x^2+11x+12\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)=36\left(x^2+11x+30\right)\left(x^2+11x+31\right)\)
\(\Leftrightarrow\left(x^2+11x+12\right)\left(x^2+11x+28\right)\left(x^2+11x+30\right)=36\left(x^2+11x+30\right)\left(x^2+11x+31\right)\)
Đặt \(x^2+11x+30=a\)
\(\Leftrightarrow\left(a-18\right)\left(a-2\right)a=36a\left(a+1\right)\)
\(\Leftrightarrow a^3-56a^2=0\)
\(\Leftrightarrow a^2\left(a-56\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\a=56\end{matrix}\right.\)
Với \(a=0\Leftrightarrow x^2+11x+30=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-6\end{matrix}\right.\)
Với \(a=56\Leftrightarrow x^2+11x+30=56\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=2\end{matrix}\right.\)
đề sai rồi bạn , phải là ( x2+11x + 12)(x2+9x+20 ) = 36(x2+11x+30)(x2+11x+31)
$ĐKXĐ:x \neq -4;-5;-6;-7$
$pt⇔\dfrac{1}{x^2+4x+5x+20}+\dfrac{1}{x^2+5x+6x+30}+\dfrac{1}{x^2+6x+7x+42}=\dfrac{1}{18}$
$⇔\dfrac{1}{(x+4)(x+5)}+\dfrac{1}{(x+5)(x+6)}+\dfrac{1}{(x+6)(x+7)}=\dfrac{1}{18}$
$⇔\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}$
$⇔\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}$
$⇔\dfrac{3}{(x+4)(x+7)}=\dfrac{1}{18}$
$⇔x^2+11x+28=54$
$⇔x^2+11x-26=0$
$⇔x^2-2x+13x-26=0$
$⇔(x-2)(x+13)=0$
$⇔$ \(\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)(t/m)
Vậy phương trình đã cho có tập nghiệm $S=(2;-13)$
Ta có:
\(x^2+9x+2x=\left(x+4\right)\left(x+5\right)\)
\(x^2+11x+30=\left(x+6\right)\left(x+5\right)\)
\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)
ĐK: \(\left\{{}\begin{matrix}x\ne-4\\x\ne-5\\x\ne-6\\x\ne-7\end{matrix}\right.\)
pt \(\Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\Leftrightarrow\dfrac{18\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}-\dfrac{18\left(x+4\right)}{18\left(x+4\right)\left(x+7\right)}=\dfrac{\left(x+4\right)\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}\)
\(\Rightarrow18\left(x+7\right)-18\left(x+4\right)=\left(x+4\right)\left(x+7\right)\)
\(\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+13=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=2\end{matrix}\right.\) (tm)
ĐK : \(x\ge-\frac{42}{11}\)
+ Đặt \(t=\sqrt{11x+42}\ge0\) thì pt đã cho trở thành :
\(x^2+t^2=2xt\Leftrightarrow\left(x-t\right)^2=0\)
\(\Leftrightarrow x=t\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{11x+42}=x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\11x+42=x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2-11x-42=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-14\right)\left(x+3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=14\left(TM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy x = 4 là nghiệm duy nhất của pt đã cho
x=14 hay 4 vậy bạn