khai triển và rút gọn biểu thức :
\(\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{3}-1}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{\sqrt{3}+1}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=\frac{\sqrt{3}-1}{1+\sqrt{\frac{2+\sqrt{3}}{2}}}+\frac{\sqrt{3}+1}{1-\sqrt{\frac{2-\sqrt{3}}{2}}}\)
\(=\frac{\sqrt{3}-1}{1+\frac{\sqrt{4+2\sqrt{3}}}{2}}+\frac{\sqrt{3}+1}{1-\frac{\sqrt{4-2\sqrt{3}}}{2}}=\frac{\sqrt{3}-1}{1+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}}+\frac{\sqrt{3}+1}{1-\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}}\)
\(=\frac{\sqrt{3}-1}{\frac{3+\sqrt{3}}{2}}+\frac{\sqrt{3}+1}{\frac{3-\sqrt{3}}{2}}=\frac{2\left(\sqrt{3}-1\right)}{\sqrt{3}\left(\sqrt{3}+1\right)}+\frac{2\left(\sqrt{3}+1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}\)
\(=\frac{2}{\sqrt{3}}\left(\frac{4-2\sqrt{3}+4+2\sqrt{3}}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)=\frac{2}{\sqrt{3}}.\frac{8}{2}=\frac{8}{\sqrt{3}}=\frac{8\sqrt{3}}{3}\)
\(\forall k\ge0\)ta có :
\(\frac{1}{\sqrt{k}+\sqrt{k+1}}=\frac{\sqrt{k+1}-\sqrt{k}}{\left(\sqrt{k}+\sqrt{k+1}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{k+1-k}=\sqrt{k+1}-\sqrt{k}\)
Bạn áp dụng công thức này vào dãy trên ta sẽ có các số hạng triệt tiêu đi nhau và ra kết quả
\(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\sqrt{2}-1+\sqrt{2}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)
\(=-1+\sqrt{100}=\sqrt{100}-1=10-1=9\)
A = \(\frac{1}{1+\sqrt{2}}\) + \(\frac{1}{\sqrt{2}+\sqrt{3}}\) + . . . . . . . . . + \(\frac{1}{\sqrt{99+\sqrt{100}}}\)
= \(\sqrt{2}\) - 1 + \(\sqrt{2}\) - \(\sqrt{3}\) + . . . . . . . + \(\sqrt{100}\) - \(\sqrt{99}\)
= - 1 + \(\sqrt{100}\) = \(\sqrt{100}\) - 1 = 10 - 1 = 9
a) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\)
\(=\left[-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\cdot\left(\sqrt{2}-\sqrt{5}\right)\)
\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)
\(=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)
\(=-\left(2-5\right)\)
\(=-\left(-3\right)\)
\(=3\)
b) Ta có:
\(x^2-x\sqrt{3}+1\)
\(=x^2-2\cdot\dfrac{\sqrt{3}}{2}\cdot x+\left(\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)
\(=\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)
Mà: \(\left(x-\dfrac{\sqrt{3}}{2}\right)^2\ge0\forall x\) nên
\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)
Dấu "=" xảy ra:
\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}}{2}\)
Vậy: GTNN của biểu thức là \(\dfrac{1}{4}\) tại \(x=\dfrac{\sqrt{3}}{2}\)
a)
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\\ =\left(-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(-\sqrt{2}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}^2-\sqrt{5}^2\right)\\ =-\left(2-5\right)\\ =-\left(-3\right)\\ =3\)
Với mọi \(k\ge2\) thì \(\frac{2k+\sqrt{k^2-1}}{\sqrt{k-1}+\sqrt{k+1}}=\frac{\left[\left(\sqrt{k-1}\right)^2+\left(\sqrt{k+1}\right)^2+\sqrt{\left(k-1\right)\left(k+1\right)}\right]\left(\sqrt{k+1}-\sqrt{k-1}\right)}{\left(\sqrt{k-1}+\sqrt{k+1}\right)\left(\sqrt{k+1}-\sqrt{k-1}\right)}\)
\(=\frac{\sqrt{\left(k+1\right)^3}-\sqrt{\left(k-1\right)^3}}{2}\)
Suy ra tổng đã cho có thể viết là :
\(A=\frac{1}{2}\left[\sqrt{3^3}-\sqrt{1^3}+\sqrt{4^3}-\sqrt{2^3}+\sqrt{5^3}-\sqrt{3^3}+\sqrt{6^3}-\sqrt{4^3}+...+\sqrt{101^3}-\sqrt{99^3}\right]\)
\(=\frac{1}{2}\left[-1-\sqrt{2^3}+\sqrt{101^3}+\sqrt{100^3}\right]\)
\(=\frac{999+\sqrt{101^3}-\sqrt{8}}{2}\)
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+......+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{\sqrt{1}-\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+......+\frac{\sqrt{n-1}-\sqrt{n}}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n-1}-\sqrt{n}\right)}\)\(=\frac{\sqrt{1}-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+......+\frac{\sqrt{n-1}-\sqrt{n}}{n-1-n}\)
=\(-\left(\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+......+\sqrt{n-1}-\sqrt{n}\right)=-\left(1-\sqrt{n}\right)=\sqrt{n}-1\)
\(\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
\(=\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)-\sqrt{3}\left(\sqrt{\sqrt{3}+1}-1\right)}{\left(\sqrt{\sqrt{3}+1}-1\right)\left(\sqrt{\sqrt{3}+1}+1\right)}\)
\(=\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1\right)}{\sqrt{3}+1-1}\)
\(=\frac{\sqrt{3}.2}{\sqrt{3}}\)
\(=2\)
\(\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
\(=\frac{\sqrt{3}.\left(\sqrt{1+\sqrt{3}}+1\right)}{\left(\sqrt{\sqrt{3}+1}-1\right)\left(\sqrt{1+\sqrt{3}}+1\right)}-\frac{\sqrt{3}.\left(\sqrt{1+\sqrt{3}}-1\right)}{\left(\sqrt{\sqrt{3}+1}+1\right)\left(\sqrt{1+\sqrt{3}}+1\right)}\)
\(=\frac{\sqrt{3}.\left(\sqrt{1+\sqrt{3}}+1\right)-\sqrt{3}.\left(\sqrt{1+\sqrt{3}}-1\right)}{\left(\sqrt{1+\sqrt{3}}-1\right)\left(\sqrt{1+\sqrt{3}}+1\right)}\)
\(=\frac{\sqrt{3}.\left(\sqrt{1+\sqrt{3}}+1\right)-\sqrt{3}.\left(\sqrt{1+\sqrt{3}}-1\right)}{\sqrt{3}}\)
\(=\frac{2\sqrt{3}}{\sqrt{3}}\)
= 2