Tứ giác ABCD có 2 đường chéo cắt nhau tại O .Cứng minh rằng diện tích ABCD = (1/2).AC.BD.sinAOB
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
_Hình hơi xấu , thông cảm _
Kẻ \(\(DE\perp AC\)\)
Có \(\(\widehat{AOB}=\widehat{DOC}\)\)
Xét tam giác vuông \(\(DKO\)\), ta có :
\(\(AK=DO.\sin\widehat{DOK}\)\)hay \(\(AK=DO.\sin\widehat{AOB}\)\)
Do đó:
\(\(S_{\Delta ADC}=\frac{1}{2}.AC.DO.\sin\widehat{AOB}\left(1\right)\)\)
Tương tự :
\(\(S_{\Delta ACB}=\frac{1}{2}.AC.BO.\sin\widehat{AOB}\left(2\right)\)\)
Từ \(\(\left(1\right)\&\left(2\right)\Rightarrow S_{ABCD}=S_{\Delta ADC}+S_{\Delta ACB}=\frac{1}{2}.AC.\left(DO+BO\right).\sin\widehat{AOB}\)\)
\(\(\Leftrightarrow S_{ABCD}=\frac{1}{2}AC.BD.\sin\widehat{AOB}\left(dpcm\right)\)\)
_Minh ngụy_
Cách 2 :
Ta có : \(\(\sin\widehat{AOD}=\sin\widehat{AOB}=\sin\widehat{COB}=\sin\widehat{COD}\left(=\sin a\right)\)\)
Mặt khác
\(\(2S_{\Delta AOD}=AO.OD.\sin a\)\)
\(\(2S_{AOB}=AO.OB.\sin a\)\)
\(\(2S_{BOC}=BO.OC.\sin a\)\)
\(\(2S_{COD}=DO.OC.\sin a\)\)
\(\(\Rightarrow2\left(S_{AOD}+S_{AOB}+S_{BOC}+S_{COD}\right)\)\)
\(\(=AO.OD.\sin a+AO.OB.\sin a+BO.OC.\sin a+DO.OC.\sin a\)\)
\(\(=\sin a.[\left(AO\left(OD+OB\right)+OC\left(OB+OD\right)\right)]\)\)
\(\(=\sin a.\left(OD+OB\right)\left(AO+OC\right)\)\)
\(\(=\sin a.BD.AC\)\)
\(\(\Rightarrow S_{\Delta AOD}+S_{\Delta AOB}+S_{\Delta BOC}+S_{\Delta COD}=\frac{1}{2}.AC.BD.\sin a\)\)
hay \(\(S_{ABCD}=\frac{1}{2}AC.BD.\sin a\)\)mà \(\(\sin\widehat{AOB}=\sin a\)\)
\(\(\Rightarrow S_{ABCD}=\frac{1}{2}AC.BD.\sin\widehat{AOB}\)\)
_Minh ngụy_