Tìm tất cả số hữu tỉ x, y > 0 thỏa mãn x + 1/y và y + 1/x đều là các số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{x}\)là số nguyên thì \(x\inƯ\left(2\right)=\left(-2;-1;1;2\right)\)
Mà x > 0 \(\Rightarrow x=\left(1;2\right)\)
\(\frac{2}{x}\)là số nguyên \(\Leftrightarrow x\inƯ\left(2\right)=\left\{-2;-2;1;2\right\}\)
Mà \(x>0\Rightarrow x\in\left\{1;2\right\}\)
Rất vui vì giúp đc bạn <3
Để \(\dfrac{2}{x}\) là số nguyên thì \(x\in\left\{-1;1;-2;2\right\}\)
Mà x>0 nên \(x\in\left\{1,2\right\}\)
\(x=\frac{a}{b};a,b>0;\left(a,b\right)=1\).
\(\frac{5}{x}=\frac{5b}{a}\inℤ\Rightarrow a\inƯ\left(5\right)=\left\{1,5\right\}\).(vì \(\left(a,b\right)=1\))
Với \(a=1\):
\(2x=\frac{2}{b}\inℤ\Rightarrow b\inƯ\left(2\right)=\left\{1,2\right\}\)
Thử lại \(x=1,x=\frac{1}{2}\)đều thỏa mãn.
Với \(a=5\):
\(2x=\frac{10}{b}\Rightarrow b\inƯ\left(10\right)=\left\{1,2,5,10\right\}\)
\(\left(a,b\right)=1\)nên \(b\in\left\{1,2\right\}\).
Thử lại \(x=5,x=\frac{5}{2}\)đều thỏa mãn.
Vậy \(x\in\left\{1,\frac{1}{2},5,\frac{5}{2}\right\}\).
2x và 5/x
2x luôn là số nguyên
Vậy để thỏa đề thì 5/x phải là số nguyên
=> 5 chia hết cho x
x thuộc ước của 5
mà x > 0
Vậy x = 1 hoặc x = 5