CMR : \(A⋮2\)
Với \(A=\overline{abcd}-\left(a+b+c+d\right)\)
ĐK : \(a\ne0;a,b,c,d\in Z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}\)
<=> \(\frac{a.10+b}{b.10+c}=\frac{b}{c}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a.10+b}{b.10+c}=\frac{b}{c}=\frac{10a+b-b}{10b+c-c}=\frac{10a}{10b}=\frac{a}{b}\)
=> \(\frac{b}{c}=\frac{a}{b}\Rightarrow b^2=ac\)
khi đó: \(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)
Vậy:...
\(\hept{\begin{cases}b^2=ca\\c^2=bd\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}\Rightarrow}\frac{a}{b}=\frac{b}{c}=\frac{c}{d}}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
\(\Rightarrow k^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(TC DTSBN) (1)
Ta lại có \(k^3=k.k.k=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{abc}{bcd}=\frac{a}{d}\) (2)
Từ (1) ; (2) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\) (đpcm)
Cho tỉ lệ thức \(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}\left(c\ne0\right)\). CMR \(ac=b^2\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{\overline{ab}}{\overline{bc}}=\frac{10a+b}{10b+c}=\frac{10a}{10b}=\frac{b}{c}=\frac{a}{b}\)
Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow ac=b^2\left(đpcm\right)\)
Vậy \(ac=b^2\)
Bài 1: Nhân chéo
Bài 2:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}\)
\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
\(\Rightarrowđpcm\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)
\(=\dfrac{a+b+c-a+b-c}{a+b-c-a+b+c}\)
\(=\dfrac{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}{\left(a-a\right)+\left(b+b\right)+\left(c-c\right)}\)
\(=\dfrac{2b}{2b}=1\)
\(\Rightarrow a+b+c=a+b-c\)
\(\Rightarrow c=-c\)
\(\Rightarrow c+c=0\)
\(\Rightarrow2c=0\Rightarrow c=0\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(1\right)\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3\)
\(=\left(\dfrac{a+b+c}{b+c+d}\right)^3\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có:
\(\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\)
Đâu chia hết cho 2 đâu.
a=b=c=d=1 thì sao chia hết cho 2?