Cho a ,b ,c > 0 CMR : \(a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AG-GM:
\(\dfrac{a^3}{a^2+ab+b^2}\ge\dfrac{a^3}{a^2+\dfrac{a^2+b^2}{2}+b^2}=\dfrac{a^3}{\dfrac{3}{2}\left(a^2+b^2\right)}\)
Cmtt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^3}{b^2+bc+c^2}\ge\dfrac{b^3}{\dfrac{3}{2}\left(b^2+c^2\right)}\\\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{c^3}{\dfrac{3}{2}\left(c^2+a^2\right)}\end{matrix}\right.\)
Cộng vế theo vế của bất đẳng thức:
\(\Leftrightarrow VT\ge\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\)
Tiếp tục áp dụng BĐT AG-GM:
\(\dfrac{a^3}{a^2+b^2}=\dfrac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}\)
Cmtt\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^3}{b^2+c^2}\ge b-\dfrac{c}{2}\\\dfrac{c^3}{c^2+a^2}\ge c-\dfrac{a}{2}\end{matrix}\right.\)
Cộng vế theo vế
\(\Leftrightarrow VT\ge\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\\ \ge\dfrac{2}{3}\left(a-\dfrac{b}{2}+b-\dfrac{c}{2}+c-\dfrac{a}{2}\right)=\dfrac{2}{3}\left(a+b+c-\dfrac{a+b+c}{2}\right)=\dfrac{a+b+c}{3}\)
\(\dfrac{a^3}{a^2+ab+b^2}=a-\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^2.ab.b^2}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự và cộng lại ta sẽ có đpcm
a)Bunhia:
\(\left(1+2\right)\left(b^2+2a^2\right)\ge\left(1.b+\sqrt{2}.\sqrt{2}a\right)^2=\left(b+2a\right)^2\)
b)\(ab+bc+ca=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng bđt câu a
=>VT\(\ge\)\(\dfrac{b+2a}{\sqrt{3}ab}+\dfrac{c+2b}{\sqrt{3}bc}+\dfrac{a+2c}{\sqrt{3}ca}\)
\(\Leftrightarrow VT\ge\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{b}+\dfrac{2}{c}+\dfrac{1}{c}+\dfrac{2}{a}=3=VP\)
Tự tìm dấu "="
Nguyễn Việt LâmMashiro ShiinaBNguyễn Thanh HằngonkingCẩm MịcFa CTRẦN MINH HOÀNGhâu DehQuân Tạ MinhTrương Thị Hải Anh
a/Xét hiệu ta có: \(\frac{a^3}{b}+\frac{b^3}{b}-a^2-ab=\left(a+b\right)\left(\frac{a^2-ab+b^2}{b}\right)-a\left(a+b\right)\)
\(=\left(a+b\right)\left(\frac{a^2}{b}-2a+b\right)=\left(a+b\right)\left(\frac{a}{\sqrt{b}}+\sqrt{b}\right)^2\ge0\)
\(\RightarrowĐPCM\)
b/Tương tự ở câu a, ta cũng có:
\(\frac{a^3}{b}\ge a^2+ab-b^2\left(1\right),\frac{b^3}{c}\ge b^2+bc-c^2\left(2\right),\frac{c^3}{a}\ge c^2+ca-a^2\left(3\right)\)
Cộng (1),(2) và (3) \(VT\ge a^2+ab-b^2+b^2+bc-c^2+C^2+bc-a^2=ab+bc+ca\left(ĐPCM\right)\)
Lời giải:
Ta thấy:
\(\text{VT}=(a+\frac{ca}{a+b})+(b+\frac{ab}{b+c})+(c+\frac{bc}{c+a})\)
\(=\frac{a(a+b+c)}{a+b}+\frac{b(a+b+c)}{b+c}+\frac{c(a+b+c)}{c+a}\)
\(=(a+b+c)\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)
\(\geq (a+b+c).\frac{(a+b+c)^2}{a^2+ab+b^2+bc+c^2+ac}=\frac{(a+b+c)^3}{a^2+b^2+c^2+ab+bc+ac}\) (theo BĐT Cauchy-Schwarz)
Có:
$(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ac)=a^2+b^2+c^2+2$
$\Rightarrow a+b+c=\sqrt{a^2+b^2+c^2+2}=\sqrt{t+2}$ với $t=a^2+b^2+c^2$
Do đó:
$\text{VT}\geq \frac{\sqrt{(t+2)^3}}{t+1}$ \(=\sqrt{\frac{(t+2)^3}{(t+1)^2}}\)
Áp dụng BĐT AM-GM:
\((t+2)^3=\left(\frac{t+1}{2}+\frac{t+1}{2}+1\right)^3\geq 27.\frac{(t+1)^2}{4}\)
\(\Rightarrow \text{VT}=\sqrt{\frac{(t+2)^3}{(t+1)^2}}\geq \sqrt{\frac{27}{4}}=\frac{3\sqrt{3}}{2}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{\sqrt{3}}$
\(\frac{a^3}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3ab}=\frac{2a}{3}-\frac{b}{3}\)
Tương tự: \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b}{3}-\frac{c}{3}\) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c}{3}-\frac{a}{3}\)
Cộng vế với vế: \(VT\ge\frac{a+b+c}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Ta có: \(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2-ab+b^2\ge ab\)
\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)(Vì a , b > 0)
\(\Rightarrow a^3+b^3\ge a^2b+ab^2\)
\(\Rightarrow a^3\ge b^3-a^2b+ab^2\)
\(\Rightarrow3a^3\ge2a^3-b^3+a^2b+ab^2\)
\(\Rightarrow3a^3\ge a^3-b^3+a^3+a^2b+ab^2\)
\(\Rightarrow3a^3\ge\left(a-b\right)\left(a^2+ab+b^2\right).a\left(a^2+ab+b^2\right)\)
\(\Rightarrow3a^3\ge\left(a^2+ab+b^2\right)\left(2a-b\right)\)
\(\Rightarrow\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\)(1)
Chứng minh tương tự ta có:
\(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b-c}{3}\)(2)
\(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c-a}{3}\)(3)
Cộng vế với vế của (1) , (2) , (3)\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{2a-b+2b-c+2c-a}{3}=\frac{a+b+c}{3}\left(đpcm\right)\)
Giả sử b= min {a,b,c}
\(VT\ge\frac{a^3+b^3+c^3}{\frac{2\left(a+b+c\right)^3}{27}}+\frac{1}{2}\left(\Sigma\frac{\left(a+b\right)^2}{ab+c^2}+\Sigma\frac{\left(a-b\right)^2}{ab+c^2}\right)\)
\(\ge\left[\frac{27\left(a^3+b^3+c^3\right)}{2\left(a+b+c\right)^3}+\frac{2\left(a+b+c\right)^2}{\left(ab+bc+ca+a^2+b^2+c^2\right)}\right]\)
Sau khi quy đồng ta cần chứng minh biểu thức sau đây không âm:
Đó là điều hiển nhiên vì b = min {a,b,c}