Cho hình thang ABCD có đáy nhỏ AB=\(\frac{2}5\)đáy lớn CD. Hai đường chéo cắt nhau tại I.
a, So sánh SABI và SIBC.
b, Biết 2* SAIB + SIDC =66 cm2 . Tìm SABCD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔOAB và ΔOCD có
\(\widehat{AOB}=\widehat{COD}\)
\(\widehat{OAB}=\widehat{OCD}\)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}=\dfrac{1}{2}\)
Vì ABCD là hình thang có AC cắt BD tại O
nên \(S_{AOD}=S_{BOC}=15\left(cm^2\right)\)
\(\dfrac{OA}{OC}=\dfrac{1}{2}\)
=>\(S_{AOB}=\dfrac{1}{2}\cdot S_{BOC}\)
=>\(S_{AOB}=\dfrac{1}{2}\cdot15=7,5\left(cm^2\right)\)
\(\dfrac{OA}{OC}=\dfrac{1}{2}\)
=>\(\dfrac{S_{OAD}}{S_{DOC}}=\dfrac{AO}{OC}=\dfrac{1}{2}\)
=>\(S_{DOC}=30\left(cm^2\right)\)
\(S_{ABCD}=S_{AOB}+S_{BOC}+S_{DOC}+S_{AOD}\)
\(=30+15+15+7,5=52,5\left(cm^2\right)\)
Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng vơi ΔOCD
=>\(\dfrac{S_{OAB}}{S_{OCD}}=\left(\dfrac{AB}{CD}\right)^2=\dfrac{1}{9}\) và OA/OC=AB/CD=1/3
=>\(S_{OCD}=54\left(cm^2\right)\) và \(S_{BOC}=3\cdot S_{BOA}=3\cdot6=18\left(cm^2\right)\)
=>\(S_{AOD}=18\left(cm^2\right)\)
\(S_{ABCD}=18+18+54+6=60+36=96\left(cm^2\right)\)
Ta có hình vẽ :
a)
+ SABC = 1/2 SBCD [Vì đáy AB = 1/2 CD, đường cao kẻ từ D tới AB = đường cao kẻ từ B tới CD vì đều là đường cao của hình thang ABCD]
- Vì SABD = 1/2 SBCD mà 2 hình này có chung đáy BD suy ra Đường cao kẻ từ A tới BD = 1/2 đường cao kẻ từ C tới BD hay đường cao kẻ từ A tới BO = 1/2 đường cao kẻ từ C tới BO]
+ SABO = 1/2 SBOC [Vì chung đáy BO, đường cao kẻ từ A tới BO = 1/2 đường cao kẻ từ C tới BO]
- Vì SABO = 1/2 SBOC mà 2 hình này có chung đường cao kẻ từ B tới AC suy ra đáy AO = 1/2 OC
Vậy AO = 1/2 OC
b)
Theo câu a thì SABO = 1/2 SBOC. Vậy diện tích tam giác BOC là :
1 x 2 = 2 (cm2)
Diện tích tam giác ABC là :
1 + 2 = 3 (cm2)
+ SABC = 1/2 SACD [Vì đáy AB = 1/2 CD, đường cao kẻ từ C tới AB = đường ca kẻ từ A tới CD vì đều là đường cao của hình thang ABCD]
Diện tích tam giác ACD là :
3 x 2 = 6 (cm2)
Diện tích hình thang ABCD là :
6 + 3 = 9 (cm2)
Do 2 tam giác ABI và BIC có chung BI nên 2 đường cao kẻ từ A và C xuống BI có tỉ lệ với diện tích: S_ABI/S_BIC = 13,6/20,4 = 2/3
=> S_ADB = 2/3 S_BDC => S_ABC = 2/3 S_ADC
Mà S_ABC = S_ABI + S_BIC = 13,6 + 20,4 = 34 (cm2)
S_ADC = 34 : 2 x 3 = 51 (cm2)
S_ABCD = S_ABC + S_ADC = 34 + 51 = 85 (cm2)
Ai tích mình mình tích lại cho