K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

ta có : x2=6 \(\Rightarrow\)\(x=\sqrt{6}\)

mà \(\sqrt{6}\)là số vô tỉ nên không tồn tại số hữu tỉ x thỏa mãn x2=6 (đpcm)

chúc bạn học tốt

5 tháng 7 2019

#)Giải :

Giả sử có tồn tại số hữu tỉ \(x=\frac{a}{b}\left(a,b\in N;ƯCLN\left(a,b\right)=1;b\ne0\right)\)có bình phương bằng 6

Ta có : \(x^2=\left(\frac{a}{b}\right)^2=6\)

\(\Rightarrow a^2=6b^2\)

\(\Rightarrow a^2⋮6^2\Rightarrow6b^2⋮6^2\Rightarrow b^2⋮6\)

Vì a và b cùng chia hết cho 6 \(\RightarrowƯCLN\left(a,b\right)\ge6\)(không thể xảy ra vì ƯCLN(a,b) = 1)

Vậy không tồn tại số hữu tỉ x thỏa mãn x2 = 6

=> đpcm

21 tháng 7 2015

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)

=> \(\frac{1}{x+y}=\frac{x+y}{xy}\)

=> (x + y)2 = xy

Vì (x + y)2 >= 0 (1)

Mà xy < 0 (vì x, y trái dấu) (20

Từ (1) và (2) => Ko tồn tại x, y thỏa mãn đề bài.

Cho **** nha

12 tháng 11 2019

Giả sử tồn tại cặp số nguyên (x; y) sao cho \(x^2-2018=y^2\)

\(\Rightarrow x^2-y^2=2018\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=2018\)

Dễ c/m: x  và y phải cùng chẵn hoặc cùng lẻ (Vì nếu 1 trong 2 số x,y lẻ thì tích (x=y)(x-y) lẻ, vô lí)

Lúc đó \(\hept{\begin{cases}x+y⋮2\\x-y⋮2\end{cases}}\)

\(\Rightarrow\left(x-y\right)\left(x+y\right)⋮4\)

Mà 2018 không chia hết cho 4 nên điều g/s là sai

Vậy không tồn tại cặp số nguyên x,y thoả mãn \(x^2-2018=y^2\)(đpcm)

12 tháng 11 2019

Ta có : x2 - 2018 = y2

=> x2 - y2 = 2018

=> (x + y)(x - y) = 2018 

Nếu x ; y \(\inℤ\)ta có : 2018 = 1.2018 = 2.1009 = (-1).(-2018) = (-2).(-1009)

Lập bảng xét 8 trường hợp ta có : 

x - y1201821009-1-2018-1009-2
x + y2018110092-2018-1-2-1009
x2019/22009/21011/21011/2-2019/2-2019/2-1011/2-1011/2
y2017/2-2007/21007/2-1007/2-2017/22017/2-1007/21007/2

=> Không tồn tại cặp số nguyên x,y thỏa mãn