K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: ΔABC đều(gt)mà AH là đường cao ứng với cạnh BC(gt)

nên AH là đường trung tuyến ứng với cạnh BC(Định lí tam giác đều)

hay H là trung điểm của BC

\(\Leftrightarrow BH=\dfrac{BC}{2}=\dfrac{3}{2}=1.5\left(cm\right)\)

Xét ΔABH vuông tại H có 

\(\widehat{ABH}+\widehat{BAH}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{BAH}=90^0-60^0\)

hay \(\widehat{BAH}=30^0\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AH^2+BH^2=AB^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=3^2-1.5^2=6.75\)

hay \(AH=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

Vậy: \(AH=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

29 tháng 10 2021

b: Xét ΔACB vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\left(1\right)\)

Xét ΔABK vuông tại A có AK là đường cao

nên \(AB^2=BK\cdot BD\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=BK\cdot BD\)

17 tháng 5 2016

mình mới lớp 5 thôi à

10 tháng 1 2021

undefined

 

a, tgABC cân tại A suy ra gócABC=gócACB, AB=AC

AH⊥BC ⇒ gócAHB=gócAHC

Xét △ABH và △ACH có:

gócABC=gócACB,AB=AC,gócAHB=gócAHC (C/m trên)

⇒ △ABH=△ACH (ch-gn)

b, Ta có △ABH=△ACH ➩ gócDAH=gócEAH (2 góc tương ứng)

Xét △DAH và △EAH có

gócDAH=gócEAH (c/m trên), ADH=gócAEH=90độ (DH⊥AB, HE⊥AC)

AH là cạnh chung

⇒ △DAH=△EAH (ch-gn) ⇒ AD=AE (2 cạnh tương ứng)

⇒ △ADE cân tại A

c, △ABC cân tại A ⇒ gócB=\(\dfrac{180độ-gócA}{2}\)

△ADE cân tại A ⇒ gócC=\(\dfrac{180độ-gócA}{2}\)

⇒gócB=gócC , mà 2 góc này nằm ở vị trí đồng vị

⇒ DE//BC

12 tháng 6 2018

Bạn tự vẽ hình nha ^^

a)--- Xét \(\Delta ABD\)và \(\Delta EBD\)có 

\(AB=EB\left(GT\right)\)(1)

\(\widehat{BAD}=\widehat{BED}=90^o\)(2)

\(BD:\)Cạnh chung (3)

Từ (1) ;(2) và (3)

\(\Rightarrow\Delta ABD=\Delta EBD\)( c.g.c )

b) 

---Theo đề bài ta có :

\(AB=EB\left(GT\right)\)(1)

và  \(\widehat{ABC}=60^o\left(gt\right)\)(2)

Từ (1)và (2)\(\Rightarrow\Delta ABE\)đều                   (đpcm)

--- Vì  \(\Delta ABE\)đều

\(\Rightarrow AB=BE=AE\)

Mà \(AB=6cm\)(gt)

...\(AE=EC\)

\(\Rightarrow EC=6cm\)

mà \(BE=6cm\)

Có  \(EC+BE=BC\)

\(\Rightarrow6+6=12cm\)

Vậy BC =12cm

1 tháng 3 2021

thank b

undefined

31 tháng 10 2020

A B C H D

a)

\(\widehat{BAH}+\widehat{HAB}=90^0\)

\(\widehat{CAH}+\widehat{HAB}=90^0\)

\(\Rightarrow\widehat{CAH}=\widehat{HAB}\)

b)

\(\widehat{ADC}=\widehat{ABD}+\widehat{DAB}\)

\(\widehat{DAC}=\widehat{CAH}+\widehat{HAD}\)

\(AD\) là phân giác \(\widehat{HAB}\)

\(\Rightarrow\widehat{HAD}=\widehat{DAB}\)

\(\Rightarrow\widehat{ADC}=\widehat{DAC}\)

15 tháng 12 2015

Muốn DE song song BC: ta theo từ vuông góc đến song song

Với AH vuông góc BC

Xét tam giác như câu A ta có AHB = AHC- kề bù- bằng nhau> vuông góc

Với AH vuông góc DE

Đặt tên I là giao điểm của AH và DE

Ta xét tam giác ADH và AHE = nhau do(cạnh huyền - cạnh góc vuông)

Ta có: DHI = EHI và DH=HEvà HI cạnh chung

bằng nhau xong ta có 

DIH=EIH mà kề bù-bằng nhau> vuông góc

Cả hai vuông vs AH thì kết luận Từ vuông góc đến song song