K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(\sqrt{3+\sqrt{5}}\cdot\sqrt{2}=\sqrt{6+2\sqrt{5}}=\sqrt{5}+1\)

3) \(\left(\sqrt{\dfrac{3}{4}}-\sqrt{3}+5\cdot\sqrt{\dfrac{4}{3}}\right)\cdot\sqrt{12}\)

\(=\left(\dfrac{\sqrt{3}}{2}-\dfrac{2\sqrt{3}}{2}+5\cdot\dfrac{2}{\sqrt{3}}\right)\cdot\sqrt{12}\)

\(=\dfrac{17\sqrt{3}}{6}\cdot2\sqrt{3}\)

\(=\dfrac{34\cdot3}{6}=\dfrac{102}{6}=17\)

12 tháng 10 2021

c: Ta có: \(C=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)

\(=\dfrac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\sqrt{10}\)

16 tháng 10 2021

a: Ta có: \(A=\sqrt{8}-2\sqrt{18}+3\sqrt{50}\)

\(=2\sqrt{2}-6\sqrt{2}+15\sqrt{2}\)

\(=11\sqrt{2}\)

b: Ta có: \(B=\sqrt{125}-10\sqrt{\dfrac{1}{20}}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)

\(=5\sqrt{5}-\sqrt{5}+\sqrt{5}-1\)

\(=5\sqrt{5}-1\)

a: Ta có: \(\sqrt{75}-2\sqrt{27}+\sqrt{48}\)

\(=5\sqrt{3}-2\cdot3\sqrt{3}+4\sqrt{3}\)

\(=3\sqrt{3}\)

c: Ta có: \(\sqrt{8+2\sqrt{7}}-\sqrt{11-4\sqrt{7}}\)

\(=\sqrt{7}+1-\sqrt{7}+2\)

=3

17 tháng 10 2023

loading...  loading...  

6 tháng 8 2019

a, A= \(\frac{\sqrt{48-12\sqrt{7}}}{2}-\frac{\sqrt{48+12\sqrt{7}}}{2}\)

       = \(\frac{\sqrt{\left(\sqrt{42}-\sqrt{6}\right)^2}}{2}-\frac{\sqrt{\left(\sqrt{42}+\sqrt{6}\right)^2}}{2}\)

       = \(\frac{-2\sqrt{6}}{2}\)

       = \(-\sqrt{6}\)

30 tháng 6 2021

a) \(\text{2}\sqrt{\text{18}}-9\sqrt{50}+3\sqrt{8}\)

\(\text{6}\sqrt{\text{2}}-45\sqrt{2}+6\sqrt{2}\)

\(-33\sqrt{2}\)

30 tháng 6 2021

b) = \(7-2.\sqrt{7}.\sqrt{3}+3+7.2\sqrt{21}\)

\(10-2\sqrt{21}+14\sqrt{21}\)

\(10+12\sqrt{21}\)

bài 1: 

a: Ta có: \(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)

\(=6\sqrt{2}-45\sqrt{2}+6\sqrt{2}\)

\(=-33\sqrt{2}\)

b: Ta có: \(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)

\(=10-2\sqrt{21}+14\sqrt{21}\)

\(=12\sqrt{21}+10\)

Bài 2: 

a: Ta có: \(\sqrt{\left(2x+3\right)^2}=8\)

\(\Leftrightarrow\left|2x+3\right|=8\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=8\\2x+3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{11}{2}\end{matrix}\right.\)

b: Ta có: \(\sqrt{9x}-7\sqrt{x}=8-6\sqrt{x}\)

\(\Leftrightarrow4\sqrt{x}=8\)

hay x=4

c: Ta có: \(\sqrt{9x-9}+1=13\)

\(\Leftrightarrow3\sqrt{x-1}=12\)

\(\Leftrightarrow x-1=16\)

hay x=17