K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

Sử dụng phương pháp hoán vị là ra thôi bạn

4 tháng 7 2019

\(\Leftrightarrow ab^2-ac^2+bc^2-ba^2+ca^2-cb^2\)

\(\Leftrightarrow a\left(b^2-c^2-ab+ac\right)+bc^2-b^2c\)

\(\Leftrightarrow a[\left(b-c\right)\left(b+c\right)-a\left(b-c\right)]-bc\left(b-c\right)\)

\(\Leftrightarrow a\left(b-c\right)\left(b+c-a\right)-bc\left(b-c\right)\)

\(\Leftrightarrow\left(b-c\right)\left(ab+ac-a^2-bc\right)\)

\(\Leftrightarrow\left(b-c\right)[a\left(b-a\right)-c\left(b-a\right)]\)

\(\Leftrightarrow\left(b-c\right)\left(a-c\right)\left(b-a\right)\)

NM
10 tháng 10 2021

ta có :

undefined

20 tháng 9 2020

 .\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)

=\(a\left(b^2-2bc+c^2-a^2\right)+b\left(a^2+2ac+c^2-b^2\right)+c\left(a^2-2ab+b^2-c^2\right)\)

=\(a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(a+c\right)^2-b^2\right]+=c\left[\left(a-b^2\right)-c^2\right]\)

=\(a\left(c-b+a\right)\left(a+b-c\right)+b\left(a+c-b\right)\left(a+b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)

=\(\left(a+c-b\right)\left[a\left(c-b+a\right)+b\left(a+b+c\right)+c\left(a-b-c\right)\right]\)

=\(\left(a+c-b\right)\left(b+a-c\right)\left(c+b-a\right)\)

\(a\left(b^2+c^2\right)+b\left(a^2+c^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)

\(=c\left(a-b\right)^2+\left[ab^2+ac^2+a^2b+bc^2-a^3-b^3-c^3\right]\)

\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)+ab^2+a^2b-a^3-b^3\)

\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-\left(a^3-a^2b\right)+\left(ab^2-b^3\right)\)

\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-a^2\left(a-b\right)+b^2\left(a-b\right)\)

\(=c\left(a-b\right)^2+c^2\left(a+b-c\right)-\left(a+b\right)\left(a-b\right)^2\)

\(=-\left(a-b\right)^2\left(a+b-c\right)+c^2\left(a+b-c\right)\)

\(=\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\)

21 tháng 3 2017

11 tháng 3 2018

Ta có

D   =   a ( b 2   +   c 2 )   –   b ( c 2   +   a 2 )   +   c ( a 2   +   b 2 )   –   2 a b c     =   a b 2   +   a c 2   –   b c 2   –   b a 2   +   c a 2   +   c b 2   –   2 a b c     =   ( a b 2   –   a 2 b )   +   ( a c 2   –   b c 2 )   +   ( a 2 c   –   2 a b c   +   b 2 c )     =   a b ( b   –   a )   +   c 2 ( a   –   b )   +   c ( a 2   –   2 a b   +   b 2 )     =   - a b ( a   –   b )   +   c 2 ( a   –   b )   +   c ( a   –   b ) 2     =   ( a   –   b ) ( - a b   +   c 2   +   c ( a   –   b ) )     =   ( a   –   b ) ( - a b   +   c 2   +   a c   –   b c )     =   ( a   –   b ) [ ( - a b   +   a c )   +   ( c 2   –   b c ) ]

= (a – b)[a(c – b) + c(c – b)]

= (a – b)(a + c)(c – b)

Với a = 99; b = -9; c = 1, ta có

D = (99 - (-9))(99 + 1) (1 - (-9)) = 108.100.10 = 108000

Đáp án cần chọn là: B

10 tháng 6 2021

mới ăn miếng cơm cà ngon nhức nách luôn ai thèm cơm cà không điểm danh nào

18 tháng 12 2021

\(=\left(b^2+c^2+2bc-a^2\right)\left(b^2+c^2-2bc-a^2\right)\)

\(=\left(b+c-a\right)\left(b+c+a\right)\left(b-c-a\right)\left(b-c+a\right)\)

26 tháng 1 2019

a) (a-b)(b-c)(a-c).

b) (a-b)(b-c)(a - c)(a + b + c).

5 tháng 8 2021

giups mình với nha

 

c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)

\(=a^4-2a^3b+2ab^3-b^4\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)

\(=\left(a-b\right)^3\cdot\left(a+b\right)\)

2 tháng 4 2019

ko bt đâu thông cảm

2 tháng 4 2019

phân tích bằng đặt ẩn phụ=))

Ta có:\(\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2+\left(ab+bc+ca\right)^2\)

\(=\left(a^2+b^2+c^2\right)\left[\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)\right]+\left(ab+bc+ca\right)^2\)

Đặt:\(a^2+b^2+c^2=x;ab+bc+ca=y\),ta có:

\(x\left(x+2y\right)+y^2=x^2+2xy+y^2=\left(x+y\right)^2\)

Thay vào,ta được:\(\left(x+y\right)^2=\left(a^2+b^2+c^2+ab+bc+ca\right)^2\)