cho tam giác ABC.Trên tia đối của AC lấy điểm D. Trên nửa mp bờ là AC ko chứa B vẽ tia Cx sao cho góc CDx bằng góc ABC. Gọi E là giao của Dx và AB. Chứng minh rằng:
BC.DE = AC.AE + AB.AD
Mọi người dùng toán 8 giải cho e nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ chứng minh ΔABC~ΔADE (g.g)
⇒ \(\frac{AB}{AD}=\frac{BC}{DE}=\frac{AC}{AE}\) ⇒ \(BC=\frac{AC.DE}{AE};AB=\frac{AC.AD}{AE}\)
Cần chứng minh \(BC.DE=AB.AD+AC.AE\)
⇔ \(\frac{DE^2.AC}{AE}=\frac{AD^2.AC}{AE}+AC.AE\)
⇔ \(DE^2=AD^2+AE^2\)
Suy ra tam giác ADE vuông tại A, hay tam giác ABC vuông tại A
Bạn xem lại đề :D Mình đến đây ko giải được nữa
a) Ta có :
AB = AD ( gt ) ( 1 )
CA = AE ( gt ) ( 2 )
Từ ( 1 )( 2 )=>AB+AE = AC + AD
hay BE = CD
Mình không vẽ hình, bạn tự vẽ nhé!
a) M là trung điểm của BC \(\Rightarrow BM=MC\)
Xét \(\Delta BAM\)và \(\Delta CDM\)có:
MA=MD ( giả thiết )
\(\widehat{BMA}=\widehat{CMD}\)( tính chất đối đỉnh )
BM=MC ( chứng minh trên )
\(\Rightarrow\Delta BAM=\Delta CDM\)( c.g.c )
b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:
MA=MD ( giả thiết )
\(\widehat{BMD}=\widehat{CMA}\)( tính chất đối đỉnh )
BM=MC ( chứng minh trên )
\(\Rightarrow\Delta ACM=\Delta DBM\)( c.g.c )
\(\Rightarrow AC=BD\)( 2 cạnh tương ứng )
\(\Rightarrow\widehat{MAC}=\widehat{MDB}\)( 2 góc tương ứng ) ở vị trí so lê trong
\(\Rightarrow\)AC//BD
c) Đề bài không rõ ràng mình không làm được
d) Đề bài không rõ ràng mình không làm được
Chúc bạn học tốt!