Biết \(x+y=1\)
Tìm giá trị nhỏ nhất của biểu thức
A = \(x^3+y^3+x^2+y^2+2015\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
a) Ta có: x2 > 0 và |y - 2| > 0 => ( x2 + |y - 2| ) > 0 => ( x2 + |y - 2| ) + 3 \(\ge\) 0 + 3
=> A đạt giá trị nhỏ nhất = 3
b) T có: |3y - 6| > 0 và |y + 1| > 0 => |3y - 6| + 2 . |y + 1| > 0 => (|3y - 6| + 2 . |y + 1|) - 2015 \(\ge\) 0 - 2015
=> B đạt giá trị nhỏ nhất = - 2015
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\)
Quy đồng : \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) và \(2x-3y+z=6\)
Áp dung tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{2.9-3.12+20}=\frac{6}{2}=3\)
\(\Rightarrow\begin{cases}\frac{x}{9}=3\Rightarrow x=3.9=27\\\frac{x}{12}=3\Rightarrow x=3.12=36\\\frac{x}{20}=3\Rightarrow x=3.20=60\end{cases}\)
Vậy .......................
Ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}.\frac{1}{3}=\frac{y}{4}.\frac{1}{3}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{3}.\frac{1}{4}=\frac{z}{5}.\frac{1}{4}\Rightarrow\frac{y}{12}=\frac{z}{20}\left(2\right)\)
Từ (1) và (2); ta được:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
\(\Rightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\Rightarrow x=3.9=27\)
\(\Rightarrow y=3.12=36\)
\(\Rightarrow z=3.20=60\)
\(x+y=3\\ \Rightarrow x=3-y\\ \Rightarrow A=\left(3-y\right)^2+y^2=2y^2-6y+9\\ \Rightarrow A=2\left(y^2-2\cdot\dfrac{3}{2}y+\dfrac{9}{4}\right)+\dfrac{9}{2}=2\left(y-\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\)
Vậy \(A_{min}=\dfrac{9}{2}\Leftrightarrow y=\dfrac{3}{2}\Leftrightarrow x=3-\dfrac{3}{2}=\dfrac{3}{2}\)
Đáp án A
\(x+y=1\Rightarrow x=1-y\)
\(A=x^3+y^3+xy\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(=x^2+y^2\) (vì x + y = 1)
\(=\left(1-y\right)^2+y^2\)
\(=2y^2-2y+1\)
\(=2\left(y^2-y+\frac{1}{4}\right)+\frac{1}{2}=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall y\)
Dấu "=" xảy ra khi: \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\Rightarrow x=1-y=\frac{1}{2}\)
Vậy GTNN của A là \(\frac{1}{2}\)khi \(x=y=\frac{1}{2}\)
\(A=x^3+y^3+xy=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(=x^2-xy+y^2+xy=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)
Nên min A là \(\frac{1}{2}\) khi \(x=y=\frac{1}{2}\)
Do x+y=1 nên x, y không đồng thời bằng 0
+) Nếu \(x=0\)\(\Rightarrow\)\(y=1\)\(\Rightarrow\)\(A=0^3+1^3+0^2+1^2+2015=2017\)
Tương tự với y = 0
+) Nếu x, y khác 0, ta có : \(A=x^3+y^3+x^2+y^2+2015=\frac{x^4}{x}+\frac{y^4}{y}+x^2+y^2+2015\)
\(\ge\frac{\left(x^2+y^2\right)^2}{x+y}+x^2+y^2+2015\ge\frac{\frac{\left(x+y\right)^4}{4}}{x+y}+\frac{\left(x+y\right)^2}{2}+2015=\frac{3}{4}+2015\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)
Do \(\frac{3}{4}+2015< 2017\) nên GTNN của \(A=\frac{3}{4}+2015\) khi \(x=y=\frac{1}{2}\)