K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5

5 năm rồi chưa ai rep:))

 

8 tháng 4 2015

Giả sử m;n;p không có số nào chia hết cho 3

=> m ; n;p có dạng 3k +1 hoặ 3k + 2 (k thuộc N) 

=> m^2;n^2;p^2 có dạng 3x + 1(X thuộc N)

=> n^2 + p^2 cia 3 dư 2

Mà m^2 chia 3 dư 1 

=> m^2 khác n^2 + p^2 ( trái vói giả thiết )

Vậy m;n;p có ít nhất1 số chia hết cho 3

=>m*n*p chia hết cho 3                                (1)

Chứng minh tương tự :

m*n*p chia hếu cho 5                                    (2)

Từ (1) và (2) và  (3;5)=1

=>m*n*p chia heetscho 3*5 =15

NV
6 tháng 4 2022

Ta có: \(59\equiv3\left(mod7\right)\Rightarrow59^n\equiv3^n\left(mod7\right)\)

Tương tự: \(17^n\equiv3^n\left(mod7\right)\) ; \(9^n\equiv2^n\left(mod7\right)\)

\(\Rightarrow A\equiv3^n-3^n-2^n+2^n\left(mod7\right)\)

\(\Rightarrow A⋮7\)

Vẫn tương tự, ta có: \(A\equiv4^n-2^n-4^n+2^n\left(mod5\right)\)

\(\Rightarrow A⋮5\)

Mà 7 và 5 nguyên tố cùng nhau

\(\Rightarrow A⋮35\)

24 tháng 2 2020

Ta có:

( 2m + n ) . ( m + 2n ) = 2m . m + n . m + 2m . 2n + n . 2n 

= 2m2 + mn + 4mn + 2n2

= 2 ( m2 + n) + 5mn 

Vì m2 + n2 chia hết cho 5 => 2 ( m + n2 ) chia hết cho 5 và 5mn chia hết cho 5

=> 2 ( m2 + n2 ) + 5mn chia hết cho 5

=> (2m + n ) ( m + 2n ) chia hết cho 5

=> Tồn tại ít nhất 1 trong hai số 2m + n hoặc m + 2n chia hết cho 5.

24 tháng 2 2020

thank bạn 

NV
6 tháng 4 2022

Nhận xét: với mọi n nguyên thì \(n^2\equiv\left\{0;1;2;4\right\}\left(mod7\right)\)

Giả sử a;b tồn tại 1 số không chia hết cho 7

\(\Rightarrow a^2+b^2\equiv\left\{1;2;3;4;5;6;8\right\}\left(mod7\right)\)

\(\Rightarrow a^2+b^2\) luôn ko chia hết cho 7 (trái với giả thiết)

Vậy điều giả sử là sai hay \(a;b\) đều chia hết cho 7

11 tháng 11 2021

a: \(\Leftrightarrow2n+1\in\left\{1;3;9\right\}\)

hay \(n\in\left\{0;1;4\right\}\)

11 tháng 11 2021

\(a,\Leftrightarrow10n+14⋮2n+1\\ \Leftrightarrow5\left(2n+1\right)+9⋮2n+1\\ \Leftrightarrow2n+1\inƯ\left(9\right)=\left\{1;3;9\right\}\\ \Leftrightarrow n\in\left\{0;1;4\right\}\)