K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

a) Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0

Vì x + y + z = 0 nên (x+y+z)^2 =0

suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0

suy ra x^2 + y^2 + z^2 = 0

suy ra x = y = z = 0

tôi ms lớp 7 

tick nhé mọi người

25 tháng 1 2016

em mới lớp 5 nên khong bít

26 tháng 7 2021

Đây nhé! Tích giúp c nhaundefined

26 tháng 7 2021

batngo

21 tháng 7 2023

Ta có

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (1)

Ta có

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=x+y+z\)

\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\) (2)

Từ (1) và (2)

\(x^2+y^2+z^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(\Rightarrow xy+yz+zx=0\)

NV
3 tháng 10 2021

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Rightarrow ab+bc+ca=-5\)

\(\Rightarrow\left(ab+bc+ca\right)^2=25\)

\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=25\)

\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=25\)

\(\Rightarrow a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\right]\)

\(=10^2-2.25=50\)

3 tháng 10 2021

Ta có: a+b+c=0 ⇒(a+b+c)2=0

Hay a2+b2+c2+2ab+2bc+2ca=0

1+2(ac+bc+ca)=0

ab+bc+ca=\(\dfrac{-1}{2}\)

\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=100\left(1\right)\)

\(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+b^2ac+c^2ab+a^bc=a^2b^2+b^2c^2+c^2+a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2=25\)

hay \(2\left(a^2b^2+b^2c^2+c^2a^2\right)=50\left(2\right)\)

Từ (1) và (2) ⇒a4+b4+c4=50

11 tháng 1 2022

Ta có a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0

+) Nếu a2+b2+c2=2a2+b2+c2=2 thì ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1

⇔a2b2+b2c2+c2a2=1⇔a2b2+b2c2+c2a2=1

Ta có : (a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4

⇔a4+b4+c2+2=4⇔a4+b4+c4=2⇔a4+b4+c2+2=4⇔a4+b4+c4=2

+ Nếu a2+b2+c2=1a2+b2+c2=1 làm tương tự

12 tháng 1 2022

đề sai r bạn

12 tháng 1 2022

chuẩn cm nó luôn