K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2023

Ta co A:B:C;D = 2:3:4:5
\(\Rightarrow\)\(\dfrac{A}{2}\) = \(\dfrac{B}{3}\) = \(\dfrac{C}{4}\) = \(\dfrac{D}{5}\) = \(\dfrac{A+B+C+D}{2+3+4+5}\) = \(\dfrac{360}{14}\) = \(\dfrac{180}{7}\)
\(\Rightarrow\) A= \(\dfrac{180}{7}\). 2 \(\approx\) 51
    B= \(\dfrac{180}{7}\). 3  \(\approx\) 77
    C=  \(\dfrac{180}{7}\). 4  \(\approx\) 103
   D=  \(\dfrac{180}{7}\). 5  \(\approx\) 129
Ta thay: A+D=180 ; B+C=180 \(\Rightarrow\) ABCD la hinh thang

a) Ta thấy : A + B + C + D = 360°

Tự áp dụng tính chất dãy tỉ số bằng nhau ta có : 

A = 144° 

B = 108° 

C = 72° 

D = 36° 

b) Vì DE , CE là phân giác ADC và ACD 

=> EDC = ADE = 18° 

=> BCE = ECD = 36° 

Xét ∆DEC ta có : 

EDC + DEC + ECD = 180° 

=> DEC = 126° 

Ta có : góc ngoài tại đỉnh C

=> 180° -  BCD = 108° 

Góc ngoài tại đỉnh D 

=> 180° - ADC = 144° 

Mà DF , CF là phân giác ngoài góc C , D 

=> CDF = 72° 

=> DCF = 54° 

Xét ∆CDF ta có : 

CDF + DFC + DCF = 180° 

=> DFC = 44° 

6 tháng 7 2016

Bài 1:

Ta có: A^ + B^ + C^ + D^ = 360o

A^ + (A^ + 10o) + (B^ +25o) + (2A^ + 5o) = 360o

A^ + (A^ + 10o) + (A^+10o +25o) + (2A^ + 5o) = 360o

5A^ + 50o = 360o

5A^ = 310o

A^ = 62o

=> B^ = A^ + 10o = 62o + 10o = 72o

C^ = B^ + 25o = 72o + 25o = 97o

D^ = 2A^ +5o = 2 * 62o + 5o = 124o + 5o = 129o 

Vậy A^ = 

B^ = 

C^ =

D^ = 

6 tháng 7 2016

Bài 2: Tớ giải có thể sẽ ko sát đề lắm nhé.

Tổng các góc ngoài của tứ giác ABCD:

(180o -A^) + (180o -B^) + (180o -C^) + (180o -D^)

= 4* 180o - (A^ + B^ + C^ + D^)

= 720o - 360o

= 360o

Vậy tổng các góc ngoài của tứ giác ABCD là 360o

7 tháng 7 2016

ta có

B = A + 10 

C = B + 25

D = 2A + 5

=> A + B + C + D =A + A + 10 + A + 10 + 25 + 2A + 5

 = 5A + 10 + 10 + 25 + 5

= 5A + 50

mả A + B + C + D = 360

=> A= 71

B = 81

C = 106

D = 146

câu b thì mk chịu 

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Do A, B, C, D theo thứ tự lập thành một cấp số cộng nên ta có:

B = A + d; C = A + 2d; D = A + 3d.

Mặt khác: A + B + C + D = 360°

⇔ A + A + d + A + 2d + A + 3d = 360°

⇔ 4A + 6d = 360°

⇔ 2A + 3d = 180°

Ta lại có: A + 2d = 5A ⇔ d = 2A

⇒ 8A = 180°

⇒ A = 22,5° và d = 45°

⇒ B = 67,5°, C = 112,5°, D = 157,5°.