B1. Giải bằng 3 cách: Cho tam giác ABC; M là trung điểm BC; N là 1 điểm trong tam giác sao cho NB=NC.
Chứng minh rằng: \(\Delta NMB\)= \(\Delta NMC\)
B2. Giải bằng 2 cách: cho \(\Delta ABC\)có AB = AC. Kẻ AE là phân giác của \(\widehat{BAC}\) (E thuộc BC).
Chứng minh rằng: \(\Delta ABE\)= \(\Delta ACE\)
B1 :
Cách 1 :
Xét \(\Delta NMB\)và \(\Delta NMC\)có :
NB = NC ( gt )
NM là cạnh chung
MB = MC ( do M là trung điểm của BC )
nên \(\Delta NMB=\Delta NMC\left(c.c.c\right)\)
Cách 2 :
Do NB = NC => tam giác NBC cân tại N => \(\widehat{NBM}=\widehat{NCM}\)
Xét \(\Delta NMB\)và \(\Delta NMC\)có :
NB = NC ( gt )
\(\widehat{NBM}=\widehat{NCM}\)( CMT )
MB = MC ( do M là trung điểm của BC )
nên \(\Delta NMB=\Delta NMC\left(c.g.c\right)\)
Cách còn lại tự làm nhá
B2 :
Cách 1 :
\(\Delta ABC\)có AB = AC => \(\Delta ABC\)cân tại A => \(\widehat{B}=\widehat{C}\)
AE là tia p/g của \(\widehat{BAC}\) => \(\widehat{BAE}=\widehat{CAE}\)
Xét \(\Delta ABE\)và \(\Delta ACE\)có :
AC = AB ( gt )
\(\widehat{BAE}=\widehat{CAE}\) ( CMT )
AE là cạnh chung
nên \(\Delta ABE=\Delta ACE\)\(\left(c.g.c\right)\)
Cách 2 :
Xét \(\Delta ABE\)và \(\Delta ACE\)có :
\(\widehat{BAE}=\widehat{CAE}\)( AE là tia p/g của BAC )
AB = AC ( gt )
\(\widehat{B}=\widehat{C}\)( do tam giác ABC cân tại A )
nên \(\Delta ABE=\Delta ACE\left(g.c.g\right)\)