Tìm x thuộc Z để
A= 3x+1/x-1 thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.
\(a,A=\frac{x-4}{x+1}=\frac{(x+1)-1-4}{x+1}=1-\frac{5}{x+1}\)
Để \(x\in Z\)thì \(x+1\inƯ(5)\)
mà \(Ư(5)=(5;1;-1;-5)\)
Ta có bảng sau
x + 1 | 5 | 1 | -1 | -5 |
x | 4 | 0 | -2 | -6 |
Vậy \(x=(4;0;-2;-6)\)
\(b,B=\frac{3x-5}{x-2}=\frac{3x-6+1}{x-2}=\frac{3x-6}{x-2}+\frac{1}{x-2}=\frac{3(x-2)}{x-2}+\frac{1}{x-2}=3+\frac{1}{x-2}\)
Để \(x\in Z\)thì \(x-2\inƯ(1)\)
mà \(Ư(1)=(1;-1)\)
Với \(x-2=1\Rightarrow x=3\)
Với \(x-1=-1\Rightarrow x=0\)
Vậy \(x=(3;0)\)
Chúc bạn học tốt nhé
\(A=\frac{x-4}{x+1}=\frac{x+1-5}{x+1}=\frac{-5}{x+1}\)
\(\Rightarrow x+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta lập bảng :
x + 1 | 1 | -1 | 5 | -5 |
x | 0 | -2 | 4 | -6 |
Vì \(x\inℤ\)thì x ta tìm đc tm
\(B=\frac{3x+5}{x-2}=\frac{3\left(x-2\right)+11}{x-2}=\frac{11}{x-2}\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Ta lập bảng :
x - 2 | 1 | -1 | 11 | -11 |
x | 3 | 1 | 13 | -9 |
Vì x\(\inℤ\)nên x ta tìm đc tm
a: A nguyên
=>3x+1 chia hết cho 2-x
=>3x-6+7 chia hết cho x-2
=>x-2 thuộc {1;-1;7;-7}
=>x thuộc {3;1;9;-5}
b: B nguyên
=>8x-4+6 chia hết cho 2x-1
=>2x-1 thuộc {1;-1;2;-2;3;-3;6;-6}
=>x thuộc {1;0;2;-1}
c: C nguyên
=>x-1 chia hết cho 2x+1
=>2x-2 chia hết cho 2x+1
=>2x+1-3 chia hết cho 2x+1
=>2x+1 thuộc {1;-1;3;-3}
=>x thuộc {0;-1;1;-2}
\(A=\frac{3x+1}{x-1}=\frac{3\left(x-1\right)+4}{x-1}=1+\frac{4}{x-1}\)
Để A nguyên thì \(\frac{4}{x-1}\) nguyên
\(\Rightarrow x-1\inƯ\left(4\right)\)
\(\Rightarrow x-1\in\left\{1;4;-1;-4\right\}\)
\(\Rightarrow x\in\left\{2;5;0;-3\right\}\)