Tìm GTNN hoặc GTLN
\(A=\left|x-7\right|+x-6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{\left|x\right|+2023}{\left|x\right|+2022}=\dfrac{\left|x\right|+2022}{\left|x\right|+2022}+\dfrac{1}{\left|x\right|+2022}\\ =1+\dfrac{1}{\left|x\right|+2022}\)
Nhận thấy : \(\left|x\right|\ge0\forall x\inℝ\)
\(\Rightarrow\left|x\right|+2022\ge2022\)
\(\Rightarrow\dfrac{1}{\left|x\right|+2022}\le\dfrac{1}{2022}\)
\(\Rightarrow D=1+\dfrac{1}{\left|x\right|+2022}\le1+\dfrac{1}{2022}=\dfrac{2023}{2022}\)
Dấu = xảy ra khi : \(\left|x\right|=0\Rightarrow x=0\)
Vậy GTLN của D là : \(\dfrac{2023}{2022}\) tại x=0
A = x( 6 - x ) + 74 + x
A = 6x - x2 + 74 + x
A = - x2 + 7x + 74
A = - ( x2 - 7x - 74 )
A = - [ x2 - 2 . 7 / 2 + ( 7 / 2 )2 - ( 7 / 2 )2 - 74 ]
A = - ( x - 7 / 2 )2 - 345 / 2 \(\le\)- 345 / 2
Dấu= xảy ra \(\Leftrightarrow\)x - 7 / 2 = 0
\(\Rightarrow\)x = 7 / 2
Vậy : Max A = - 345 / 2 \(\Leftrightarrow\)x = 7 / 2
\(x\left(x-6\right)+74+x\)
\(=x^2-6x+74+x\)
\(=x^2-5x+74\)
\(=\left(x^2-2.x.\frac{5}{2}+\frac{25}{4}\right)+\frac{271}{4}\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{271}{4}\ge\frac{271}{4}\)
Dấu '' = '' xảy ra
\(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy..................
P/s : chưa kt lại bài nên sai bỏ qua
C=|2x-3/5|+4/3>=4/3
Dấu = xảy ra khi x=3/10
D=|x-3|+|-x-2|>=|x-3-x-2|=5
Dấu = xảy ra khi -2<=x<=3
\(\left|x-3,5\right|>=0\forall x\)
=>\(-\left|x-3,5\right|< =0\forall x\)
=>\(-\left|x-3,5\right|+2,5< =2,5\forall x\)
=>\(C< =2,5\forall x\)
Dấu '=' xảy ra khi x-3,5=0
=>x=3,5
\(A=\left|x+1\right|-3\\ min_A=-3.khi.x+1=0\Leftrightarrow x=-1\\ B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\\ max_B=-\dfrac{1}{4}.khi.\left(x-\dfrac{3}{7}\right)=0\Leftrightarrow x=\dfrac{3}{7}\)
a)
A = |x + 1| - 3 ≥ 0 - 3 = -3
Dấu "=" xảy ra khi x + 1 = 0 hay x = -1
Do đó A đạt GTNN là -3 khi x = -1
b)
\(B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\le-0-\dfrac{1}{4}=-\dfrac{1}{4}\)
Dấu "=" xảy ra khi khi \(x-\dfrac{3}{7}=0\) hay \(x=\dfrac{3}{7}\)
Do đó B đạt GTLN là \(-\dfrac{1}{4}\) khi \(x=\dfrac{3}{7}\)
tại sao học 24 ngu thế , bài sai rồi mà vẵn chọn ak , giáo viên trang này bị khùng điên cả ak , hay là mắt đui ko biết nhìn mà bấm ngu thế
\(I=\left(x-2\right)^2+\left(x-5\right)^2\)
Ta có :
\(\left(x-2\right)^2\ge0\forall\) và \(\left(x-5\right)^2\ge0\forall x\)
=> \(I\ge0\)
Dấu bằng xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(x-5\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}\)
=> không có giá trị nào để I đạt giá trị nhỏ nhất .
\(I=\left(x-2\right)^2+\left(x-5\right)^2\)
Đặt \(x-2=t\)
\(\Rightarrow I=t^2+\left(t-3\right)^2\)
\(I=t^2+t^2-6t+9\)
\(I=2t^2-6t+9\)
\(I=2.\left(t^2-2.t.1,5+2,25\right)+4,5\)
\(I=2.\left(t-1,5\right)^2+4,5\)
Ta có: \(2.\left(t-1,5\right)^2\ge0\forall t\)
\(\Rightarrow2.\left(t-1,5\right)^2+4,5\ge4,5\forall t\)
\(I=4,5\Leftrightarrow2.\left(t-1,5\right)^2=0\Leftrightarrow t-1,5=0\Leftrightarrow t=1,5\)
\(\Rightarrow x-2=1,5\)
\(\Rightarrow x=3,5\)
Vậy \(I_{min}=4,5\Leftrightarrow x=3,5\)
Tham khảo nhé~
\(\left(x-4\right)^2+\left(x-5\right)^2\)
\(=x^2-8x+16+x^2-10x+25=2x^2-18x+41\)
\(=2\left(x^2-9x+\frac{41}{2}\right)=2\left[x^2-2.x.\frac{9}{2}+\left(\frac{9}{2}\right)^2+\frac{1}{4}\right]=2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\)
Vì \(\left(x-\frac{9}{2}\right)^2\ge0\)
nên \(2\left(x-\frac{9}{2}\right)\ge0\)
do đó \(2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Vậy \(Min_{\left(x-4\right)^2+\left(x-5\right)^2}=\frac{1}{2}\)khi \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)