√(25x+75) + √(x+3) = 18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-3\\x\ge2\end{matrix}\right.\)
\( \sqrt {25x + 75} + 3\sqrt {x - 2} = 2 + 4\sqrt {x + 3} + \sqrt {9x - 18} \\ \Leftrightarrow \sqrt {25\left( {x + 3} \right)} + 3\sqrt {x - 2} = 2 + 4\sqrt {x + 3} + \sqrt {9\left( {x - 2} \right)} \\ \Leftrightarrow 5\sqrt {x + 3} + 3\sqrt {x - 2} = 2 + 4\sqrt {x + 3} + 3\sqrt {x - 2} \\ \Leftrightarrow 5\sqrt {x + 3} + 3\sqrt {x - 2} - 4\sqrt {x + 3} - 3\sqrt {x - 2} = 2\\ \Leftrightarrow \sqrt {x + 3} = 2\\ \Leftrightarrow {\left( {\sqrt {x + 3} } \right)^2} = {2^2}\\ \Leftrightarrow x + 3 = 4\\ \Leftrightarrow x = 4 - 3\\ \Leftrightarrow x = 1\left( {KTM} \right) \)
Vậy phương trình vô nghiệm
Giải thích thêm: tại chỉ thỏa mãn điều kiện \(x\ge-3\) nhưng không thỏa mãn điều kiện \(x\ge2\))
Lần sau bạn nhớ ghi đúng đề nhé!
\(\sqrt{25x+75}+3\sqrt{x-2}=2+4\sqrt{x+3}-\sqrt{9x-18}\)
Đk: \(x\ge2\)
pt <=> \(\sqrt{25\left(x+3\right)}+3\sqrt{x-2}=2+4\sqrt{x+3}-\sqrt{9\left(x-2\right)}\)
\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2+4\sqrt{x+3}-3\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{x+3}+6\sqrt{x-2}=2\)
\(\Leftrightarrow x+3+36\left(x-2\right)+12\sqrt{\left(x+3\right)\left(x-2\right)}=4\)
\(\Leftrightarrow12\sqrt{x^2+x-6}=73-37x\)
phương trình vô nghiệm vì \(x\ge2\Rightarrow73-37x< 0\)mà \(VT\ge0\)
Giải:
\(\sqrt{25x+75}+3\sqrt{x-2}=2+4\sqrt{x+3}+\sqrt{9x-18}\)
\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2+4\sqrt{x+3}+3\sqrt{x-2}\)
\(\Leftrightarrow5\sqrt{x+3}=2+4\sqrt{x+3}\)
\(\Leftrightarrow\sqrt{x+3}=2\)
\(\Leftrightarrow x+3=4\)
\(\Leftrightarrow x=1\)
Vậy ...
a) Ta có: \(\sqrt{25x+75}+2\sqrt{9x+27}=5\sqrt{x+3}+18\)
\(\Leftrightarrow5\sqrt{x+3}+6\sqrt{x+3}-5\sqrt{x+3}=18\)
\(\Leftrightarrow\sqrt{x+3}=3\)
\(\Leftrightarrow x+3=9\)
hay x=6
b) Ta có: \(\sqrt{4x-8}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
\(\Leftrightarrow2\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=8\)
\(\Leftrightarrow-3\sqrt{x-2}=8\)(Vô lý)
\(\sqrt{25x+75}+3\sqrt{x-2}-2+4\sqrt{x+3}\)\(+\sqrt{9x-18}\)
= \(5\sqrt{x+3}+3\sqrt{x-2}-2+4\sqrt{x+3}+3\sqrt{x-2}\)
= \(9\sqrt{x+3}+6\sqrt{x-2}-2\)
a) Ta có: \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)
\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2\sqrt{x-2}+3\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{25x+75}=\sqrt{4x-8}\)
\(\Leftrightarrow25x-4x=-8-75\)
\(\Leftrightarrow21x=-83\)
hay \(x=-\dfrac{83}{21}\)
b) Ta có: \(\sqrt{\left(2x-1\right)^2}=4\)
\(\Leftrightarrow\left|2x-1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
c) Ta có: \(\sqrt{\left(2x+1\right)^2}=3x-5\)
\(\Leftrightarrow\left|2x+1\right|=3x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3x-5\left(x\ge-\dfrac{1}{2}\right)\\2x+1=5-3x\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3x=-5-1\\2x+3x=5-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\)
d) Ta có: \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
\(\Leftrightarrow2\sqrt{x-3}-2\sqrt{x-2}=3\sqrt{x-2}+8\)
\(\Leftrightarrow2\sqrt{x-3}-5\sqrt{x-2}=8\)
\(\Leftrightarrow4\left(x-3\right)+25\left(x-2\right)-20\sqrt{x^2-5x+6}=8\)
\(\Leftrightarrow4x-12+25x-50-8=20\sqrt{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow20\sqrt{\left(x-2\right)\left(x-3\right)}=29x-70\)
\(\Leftrightarrow x^2-5x+6=\dfrac{\left(29x-70\right)^2}{400}\)
\(\Leftrightarrow x^2-5x+6=\dfrac{841}{400}x^2-\dfrac{203}{20}x+\dfrac{49}{4}\)
\(\Leftrightarrow\dfrac{-441}{400}x^2+\dfrac{103}{20}x-\dfrac{25}{4}=0\)
\(\Delta=\left(\dfrac{103}{20}\right)^2-4\cdot\dfrac{-441}{400}\cdot\dfrac{-25}{4}=-\dfrac{26}{25}\)(Vô lý)
vậy: Phương trình vô nghiệm
a: \(\Leftrightarrow5\sqrt{x+3}-4\sqrt{x+3}=3\sqrt{x-2}-3\sqrt{x-2}+2\)
\(\Leftrightarrow\sqrt{x+3}=2\)
=>x+3=4
hay x=1
c: \(\Leftrightarrow\left(x^2+4x\right)\left(x^2+4x-5\right)=84\)
\(\Leftrightarrow\left(x^2+4x\right)^2-5\left(x^2+4x\right)-84=0\)
\(\Leftrightarrow\left(x^2+4x\right)^2-12\left(x^2+4x\right)+7\left(x^2+4x\right)-84=0\)
\(\Leftrightarrow x^2+4x-12=0\)
=>(x+6)(x-2)=0
=>x=-6 hoặc x=2
x=-24
=>-x=24
=>-x+1=25
thay -x+1=25 vào E ta được:
E=x20+(-x+1)x19+(-x+1)x18+(-x+1)x17+...+(-x+1)x3+(-x+1)x2+(-x+1)x+(-x+1)
=x20-x20+x19-x19+x18-x18+x17-...-x4+x3-x3+x2-x2+x-x+1
=1
Vậy với x=-24 thì E=1
x = ‐24
=> ‐ X = 24
=> ‐ X + 1 = 25
thay ‐x+1=25 vào E ta được:
E = x 20 + ﴾‐ x + 1﴿ x 19 + ﴾‐ x + 1﴿ x 18 + ﴾‐ x + 1﴿ x 17 + ... + ﴾‐ x + 1﴿ x 3 + ﴾‐ x + 1 ﴿ x 2 + ﴾‐ x + 1﴿ x + ﴾‐ x + 1﴿
= x 20 ‐x 20 + x 19 ‐x 19 + x 1 8 ‐x 18 + x 17 ‐...‐ x 4 + x 3 ‐x 3 + x 2 ‐x 2 + x‐x + 1
= 1
Vậy với x=‐24 thì E=1
Học tốt nha Nguyễn Quang Linh