Cho tập A có n phần tử (n ∈ N*) biết số tập con 3 phần tử nhiều hơn số tập con 2 phần tử 14 tập hợp. Hỏi A có bao nhiêu phần tử?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Số tập con của A có 8 phần tử C n 8
và số tập của A có 4 phần tử là C n 4
⇒ 26 = C n 8 C n 4 = ( n - 7 ) ( n - 5 ) ( n - 4 ) 1680
⇔ n = 20
Số tập con gồm k phần tử là C 20 k
Khi xảy ra C 20 k > C 20 k + 1
Vậy với k = 10 thì C 20 k đạt giá trị nhỏ nhất.
Đáp án D
Ta có:
C n 8 = 26 C n 4 ⇔ n ! 8 ! n − 8 ! = 26 n ! 4 ! n − 4 ⇔ n − 7 n − 6 n − 5 n − 4 = 13 .14.15.16 ⇔ n − 7 = 13 ⇔ n = 20
Số tập con gồm k phần tử của A là: C 20 k ⇒ k = 10 thì C 20 k nhỏ nhất.
Đáp án D
Số tập con của A có 8 phần tử C n 8 và số tập của A có 4 phần tử là C n 4
⇒ 26 = C n 8 C n 4 = 4 ! n − 4 ! 8 ! n − 8 ! = n − 7 n − 5 n − 4 1680 ⇔ n = 20.
Số tập con gồm k phần tử là C 20 k .
Khi xảy ra
C 20 k > C 20 k + 1 ⇔ 20 ! k ! 20 − k ! > 20 ! k + 1 ! 19 − k ! ⇔ k + 1 > 20 − k ⇔ k > 9 , 5
Vậy với thì đạt giá trị nhỏ nhất
Chọn C
Lời giải. Số tập con có 7 phần tử của tập A là C n 7
số tập con có 3 phần tử của tập A là C n 3
Theo giả thiết, ta có
C n 7 = 2 C n 3 → n = 11
Tập A có n phần tử:
Số tập con có 3 phân tử là: \(C_n^3=\frac{n!}{3!\left(n-3\right)!}=\frac{n\left(n-1\right)\left(n-2\right)}{6}\)
Số tập con 2 phần tử là : \(C_n^2=\frac{n!}{2!\left(n-2\right)!}=\frac{n\left(n-1\right)}{2}\)
Theo bài ra ta có: \(\frac{n\left(n-1\right)\left(n-2\right)}{6}-\frac{n\left(n-1\right)}{2}=14\)<=> \(n^3-6n^2+5n-84=0\Leftrightarrow n=7\)
Vậy tập A có 7 phần tử
mk k hiu cong thức cho lắm