3. a) 2015^2016 + 2015^2015 và 2016^2016
b) 5^299 và 3^501
5 tk típ theo
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 20152016 + 20152015 = 20152015 . 2015 + 20152015 = 20152015 . ( 2015 + 1 ) = 20152015 . 2016
20162016 = 20162015 . 2016
Vì 20152015 . 2016 < 20162015 . 2016 nên 20152016 + 20152015 < 20162016
b) 5299 < 5300 = ( 52 ) 150 = 25150
3501 = ( 33 ) 167 = 27167
Vì 25150 < 27167 nên 5299 < 3501
\(1.\)
a, \(27^{265}\)và \(81^{199}\)
\(27^{265}=\left(3^3\right)^{265}=3^{795}\)
\(81^{199}=\left(3^4\right)^{199}=3^{796}\)
\(\Rightarrow3^{795}< 3^{796}hay27^{265}< 81^{199}\)
b, \(1024^{15}=\left(2^{10}\right)^{15}=2^{150}\)
\(128^{21}=\left(2^7\right)^{21}=2^{147}\)
\(2^{150}>2^{147}.hay.1024^{15}>128^{21}\)
Ta có:
\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)
\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)
\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)
Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)
1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)
\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)
\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)
\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)
\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)
\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)
\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)
\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)
Mà \(2015^{2014}< 2013.2016^{2014}.2015\)
nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)
Vậy \(2015^{2016}>2016^{2015}.\)
Bài 2 :
b) x/y = 9/7 => x/9 = y/7 => x/27 = y/21 (1)
y/f = 3/7 => y/3 = f/7 => y/21 = f/49 (2)
Từ (1) và (2) => x/27 = y/21 = f/49
Áp dụng t/c của dãy tỉ số bằng nhau:
(tự làm)
c) x/y = 7/20 => x/7 = y/20 (1)
y/f= 5/8 => y/5 = f/8 => y/20 = f/32 (2)
Từ (1) và (2) => x/7 = y/20 = f/32
=> 2x/14 = 5y /100 = 2f/64
Áp dụng t/c của dãy tỉ số bằng nhau:
(phần còn lại......tự xử)
Câu này mình mới làm ở nhà thầy Phong -_-
1) Ta có: 3/-4 = -3/4
Vì -3/4 > -4/4 > -4/5
=> -3/4 > -4/5
2) 19/18 - 1 = 1/18
2017/2016 - 1 = 1/2016
Vì 1/2016 < 1/18
=> 2017 / 2016 < 19/18
3)72/73 + (72 + 26) / (73 + 26) = 98/99
Từ đó => 72/73 < 98/99
4) 18/31 > 15/31 > 15/37
=> 18/31 > 15/37
5) 72/73 > 58/73 > 58/99
=> 72/73 > 58/99
6) 2015/2016 + 2016/2017 = 2015/2016 + 2016 + 2017 =="
tk mừn đi
a) 2015^2016+2015^2015=2015^2015 .(2015+1) =2015^2015 .2016 < 2016^2015 . 2016 =2016^2016
Vậy 2015^2016+2015^2015< 2016^2016
b)5^299 < 5^300 = (5^2)^150 =25^150 < 27^150 =(3^3)^150 = 3^450 <3^501
Vậy 5^299 < 3^501