K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

ban tinh AM=\(\frac{\sqrt{41}}{2}\) ;\(AB^2+AC^2=41\)

tinh ra AH=\(\frac{20\sqrt{41}}{41}\)

theo he thuc luong trong tam giac vuong

suy ra \(AB\cdot AC=20\)

\(AB=\frac{20}{AC}\)

thay vao AB^2+AC^2=41

ta co

\(\frac{400}{AC^2}+AC^2=41\)<=> AC=4

AB=5

do AB;AC binh dang nen AB=4; BC=5 

vay (AB;AC)=(4;5);(5:4)

\(\frac{AH}{AM}=\frac{40}{41}\)

=>\(\frac{AH}{40}=\frac{AM}{41}=k\)

=>\(AH=40k\)

\(AM=41k\)

Tam giác ABC vuông tại A, AM là đường trung tuyến

=> \(AM=MC=\frac{BC}{2}=\frac{\sqrt{41}}{2}\)

=> 41k=\(\frac{\sqrt{41}}{2}\)=> k=\(\frac{\sqrt{41}}{82}\)

AH=40k=\(\frac{\sqrt{41}}{82}.40=\frac{20\sqrt{41}}{41}\)

Áp dụng định lí Pytago vào tam giác ABH ta có:

\(HM=\sqrt{AM^2-AH^2}=\sqrt{\left(\frac{\sqrt{41}}{2}\right)^2-\left(\frac{20\sqrt{41}}{41}\right)^2}=\frac{9\sqrt{41}}{82}\)

HC =HM+MC=\(\frac{\sqrt{41}}{2}+\frac{9\sqrt{41}}{82}=\frac{25\sqrt{41}}{41}\)

HB=BC-HC=\(\frac{16\sqrt{41}}{41}\)

Áp dụng định lí Pytago ta sẽ tính được

AC=5

AB=4

AH
Akai Haruma
Giáo viên
18 tháng 7 2019

Lời giải:

Giả sử $AB< AC$
Vì $AM$ là đường trung tuyến ứng với cạnh huyền $BC$ nên \(AM=\frac{BC}{2}\)

\(\Rightarrow \frac{AH}{\frac{BC}{2}}=\frac{AH}{AM}=\frac{40}{41}\Rightarrow \frac{AH}{20}=\frac{BC}{41}\).

Đặt \(\frac{AH}{20}=\frac{BC}{41}=a\Rightarrow AH=20a; BC=41a\)

\(S_{ABC}=\frac{AB.AC}{2}=\frac{AH.BC}{2}\Rightarrow AB.AC=AH.BC=20a.41a=820a^2(1)\)

Áp dụng định lý Pitago:

\(AB^2+AC^2=BC^2=(41a)^2(2)\)

Từ \((1);(2)\Rightarrow (AB+AC)^2=(41a)^2+2.820a^2=3321a^2\)

\(\Rightarrow AB+AC=9\sqrt{41}a(3)\)

Từ \((1);(3)\) áp dụng định lý Vi-et đảo suy ra $AB,AC$ là nghiệm của PT \(x^2-9\sqrt{41}ax+820a^2=0\)

\(\Leftrightarrow (x-5\sqrt{41}a)(x-4\sqrt{41}a)=0\)

\(\Rightarrow AB=4\sqrt{41}a; AC=5\sqrt{41}a\)

\(\Rightarrow \frac{AB}{AC}=\frac{4}{5}\)

Đảo lại nếu $AB>AC$ thì \(\frac{AB}{AC}=\frac{5}{4}\)

AH
Akai Haruma
Giáo viên
18 tháng 7 2019

Hình vẽ:
Một số hệ thức về cạnh và góc trong tam giác vuông

Bài 1: 

a: \(P=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}=\dfrac{-\sqrt{x}-1}{\sqrt{x}}\)

b: Để \(P=\dfrac{-3}{2}\) thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{3}{2}\)

\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+2\)

hay x=4

Bài 2: 

a: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b: \(\dfrac{BC}{\cot B+\cot C}=BC:\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)=AH\)(đpcm)

21 tháng 7 2020

vì tam giác ABC vuông tại A trung tuyến AD nên AD=DB=DC=1/2 BC=1/2 *32=16

Ta có: \(\frac{AH}{AD}=\frac{3}{4}\Leftrightarrow\frac{AH}{16}=\frac{3}{4}\)

\(\Rightarrow AH=\frac{3\cdot16}{4}=12\)

Lại có: \(AH^2=BH\cdot CH=\left(BD-HD\right)\left(DC+HD\right)\)\(=\left(16-HD\right)\left(16+HD\right)=16^2-HD^2\)

\(\Leftrightarrow12^2=16^2-HD^2\Rightarrow HD=\sqrt{16^2-12^2}=\sqrt{112}=4\sqrt{7}\)

Diện tích AHD=\(\frac{1}{2}\cdot AH\cdot HD=\frac{1}{2}\cdot12\cdot4\sqrt{7}=24\sqrt{7}\)

27 tháng 6 2018

Đặt \(\frac{AH}{40}=\frac{AM}{41}=a\Rightarrow AH=40a;AM=41a\)

=> HM=9a và BC=2AM=82a

=> HC=9a+41a=50a

Mà \(\Delta ABC\infty HAC\Rightarrow\frac{AB}{AC}=\frac{HA}{HC}=\frac{40A}{50A}=\frac{4}{5}\)

vẬY ....

^_^

27 tháng 6 2018

Xét tam giác ABC vuông tại A có AM là trung tuyến => AM = BC/2

=> BC = 2.AM = 2.41 = 82

Tam giác ABC vuông tại A nên : S ABC = AB.AC/2

Lại có : AH là đường cao nên S ABC = AH.BC/2

=> AB.AC/2 = AH.BC/2

=> AB.AC = AH.BC = 40.82 = 3280

Áp dụng định lý pitago trong tam giác ABC vuông tại A ta có :

AB^2+AC^2 = BC^2 = 82^2 = 6724

<=> (AB+AC)^2 = AB^2+AC^2+2.AB.AC = 6724+2.3280 = 13284

<=> AB+AC = 18\(\sqrt{41}\)

(AC-AB)^2 = AB^2+AC^2-2.AB.AC = 6724-2.3280 = 164

<=> AC-AB = 2\(\sqrt{41}\) ( VÌ AC > AB )

=> AB = 8\(\sqrt{41}\);AC=10\(\sqrt{41}\)

=> AB/AC = \(\dfrac{8\sqrt{41}}{10\sqrt{41}}=\dfrac{4}{5}\)

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm Tính AH,AD làm tròn đến chữ số thập phân thứ 2 2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền c) Biết AH=48cm ,...
Đọc tiếp

1/ cho tam giác ABC vuông tại A , có đường cao AH , phân giác AD biết BD=15cm Dc=20cm 
Tính AH,AD làm tròn đến chữ số thập phân thứ 2 
2/cho tam giác ABC vuông tại A ,đường cao AH ,Trung tuyến AM 
a) Biết BC=125cm , AB phần AC = 3 phần 4 Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
b) Biết AH=42cm , AB:AC=3:7 .Tính độ dài hình chiếu của mỗi cạnh góc vuông trên cạnh huyền 
c) Biết AH=48cm , HB:HC=9:16 tính AB,AC,BC 
d) Biết AH:AM=40:41 Tính tỉ số AB phần Ac 
3/Hình thang ABCD có AB//CD và hai đường chéo vuông góc . Biết BD=15cm và dường cao hình thang bằng 12cm .Tính diện tích hình thang ABCD 

4/Cho tam giác ABC cân tại A có đường cao AH=32cm đường cao BK=38,4 cm 
a) tính các cạnh của tam giác ABC 
b) đường trung trục của AC cắt AH tai O tính OH

0