Vì \(AD\) là đường trung tuyến ứng vs cạnh huyền \(BC\)
=> \(AD=\frac{BC}{2}=\frac{\sqrt{41}}{2}\left(cm\right)\)
Vì \(AH\div AD=40\div41\)
=> \(AH=\frac{40}{41}AD\)
=> \(AH=\frac{40}{41}.\frac{\sqrt{41}}{2}\)
=> \(AH=\frac{20}{\sqrt{41}}\left(cm\right)\)
AD ĐL Pytago vào \(\Delta AHD\left(\widehat{A}=90^o\right)\)
\(AH^2+HD^2=AD^2\)
=> \(HD^2=AD^2-AH^2\)
=> \(HD^2=\left(\frac{\sqrt{41}}{2}\right)^2-\left(\frac{20}{\sqrt{41}}\right)^2\)
=> \(HD^2=\frac{81}{164}\)
=> \(HD=\frac{9}{2\sqrt{41}}\)
=> \(HB=\frac{\sqrt{41}}{2}-\frac{9}{2\sqrt{41}}\)
=> \(HB=\frac{16}{\sqrt{41}}\)
AD HTL trong \(\Delta ABC\left(\widehat{A}=90^o\right)\)
\(AB^2=HB.BC\)
=> \(AB^2=\frac{16}{\sqrt{41}}.\sqrt{41}\)
=> \(AB=\sqrt{16}=4\)
AD ĐL Pytago vào \(\Delta ABC\left(\widehat{A}=90^o\right)\)
\(AB^2+AC^2=BC^2\)
=> \(16+AC^2=41\)
=> \(AC=\sqrt{25}=5\)