K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

sorry

a: AE+EC=AC

nên AE=15-9=6(cm)

Xét ΔABC có 

AD/AB=AE/AC=2/5

Do đó: DE//BC

b: Xét ΔABM có DI//BM

nên DI/BM=AD/AB

=>DI/MC=2/5(1)

Xét ΔACM có IE//CM

nên IE/CM=AE/AC=2/5(2)

Từ (1) và (2) suy ra DI=EI

hay I là trung điểm của DE

17 tháng 2 2019

Kẻ DI // BK (I thuộc AC)

\(BD=\frac{3}{4}BC\Rightarrow\frac{BD}{BC}=\frac{3}{4}\)

\(\hept{\begin{cases}AE+ED=AD\\AE=\frac{1}{3}AD\end{cases}\Rightarrow}\hept{\begin{cases}AE=\frac{1}{3}AD\\ED=\frac{2}{3}AD\end{cases}\Rightarrow}\frac{AE}{ED}=\frac{1}{2}\)

Ta có: \(\frac{AK}{CK}=\frac{AK}{KI}.\frac{KI}{KC}=\frac{AE}{ED}.\frac{BD}{BC}=\frac{1}{2}.\frac{3}{4}=\frac{3}{8}\)

18 tháng 2 2019

Trả lời............

Kẻ đường thẳng DI song song với BK (I thuộc AC)

BD = 3/4 BC suy ra BD/BC=3/4

AE + ED=AD           (1)

AE=1/3 AD 

Suy ra AE=1/3 AD ; ED = 2/3 AD suy ra AE/ED = 1/2        (2)

Từ (1) và (2) ta suy ra được :

AK/CK = AK/KI . KI/KC = AE/ED . BD/BC = 1/2 . 3/4=3/8

..............học tốt............

20 tháng 12 2021

a: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{A}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

31 tháng 8 2017

Giải

Ta thấy đường trung bình tam giác ABC nên BEDC là hình thang, lại có\(BM=MC\cdot DN=NC\Rightarrow MN\)   là đường trung bình hình thang BEDC hay MN ong song DE và BC. Lại dùng đường trung bình thì 

\(MI=KN=\frac{DE}{2}\left(1\right)\)

\(MN=\frac{DE^2+BC}{2}\Rightarrow IK=MN-2MI=\frac{DE+BC}{2}-DE\)

\(=\frac{BC-DE}{2}=\frac{DE^2}{2}\left(BC=2DE\right)\left(2\right)\)

\(\Leftrightarrow Q\cdot E\cdot D\Rightarrowđcpm\)

12 tháng 9 2017

[​IMG]
Mình sẽ làm câu b trước rồi từ đó suy ra a
b)Giả sử MP=PQ=QN đã có từ trước
Xét △△ ABC có E là trung điểm AB,D là trung điểm AC \Rightarrow ED là đường trung bình của △△ ABC\Rightarrow ED//BC và ED=BC/2(*)
Xét hình thang EDBC có M là trung điểm BE,N là trung điểm CE \Rightarrow MN//BC( (*) (*) )
Từ (*)( (*) (*) ) \Rightarrow ED//MN
Xét △△ BED có M là trung điểm BE,MP//ED \Rightarrow MP là đường trung bình của △△ BED \Rightarrow MP=ED/2
Tương tự cũng có NQ=ED/2
Ta có :MP=PQ
\Leftrightarrow ED2=BC−ED2ED2=BC−ED2
\Leftrightarrow ED=BC-ED
\Leftrightarrow 2ED=BC
Tương tự với NQ và PQ cũng rứa
Vậy muốn NQ=PQ=MP thì 2ED=BC Điều này là hiển nhiên ở (*)
từ đó phát triển lên câu a)NQ=PQ=MP=1/2ED
\Rightarrow MN=3/2ED \RightarrowMN=3/4BC
Đúng thì thanks giùm nha