Giải phương trình
\(\sqrt{10\left(x-3\right)}=\sqrt{26}\)
\(\sqrt{3x^2}=x+2\)
\(\sqrt{x^2+6x+9}=3x-6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ở VP "+4" nằm ở ngoài căn,đau bụng nên viết vội còn chạy ra WC :P
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
a
\(\sqrt{9\left(2-3x\right)^2}=6\\ \Leftrightarrow3\left|2-3x\right|=6\\ \Leftrightarrow\left|2-3x\right|=2\)
Với \(x\le\dfrac{2}{3}\) thì PT trở thành:
\(2-3x=2\\ \Leftrightarrow3x=0\\ \Leftrightarrow x=0\left(nhận\right)\)
Với \(x>\dfrac{2}{3}\) thì PT trở thành:
\(3x-2=2\\ \Leftrightarrow3x=4\\ \Leftrightarrow x=\dfrac{4}{3}\left(nhận\right)\)
b
ĐK: \(x\ge-\dfrac{3}{2}\)
\(\sqrt{4x^2-9}=2\sqrt{2x+3}\\ \Leftrightarrow\sqrt{\left(2x\right)^2-3^2}=2\sqrt{2x+3}\\ \Leftrightarrow\sqrt{2x-3}.\sqrt{2x+3}-2\sqrt{2x+3}=0\\ \Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+3}=0\\\sqrt{2x-3}-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\2x-3=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\left(nhận\right)\\x=\dfrac{7}{2}\left(nhận\right)\end{matrix}\right.\)
c
ĐK: \(x\ge3\)
\(\sqrt{10\left(x-3\right)}=\sqrt{20}\\ \Leftrightarrow10\left(x-3\right)=20\\ \Leftrightarrow x-3=2\\ \Leftrightarrow x=5\left(nhận\right)\)
d
\(\sqrt{x^2+6x+9}=3x-6\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-6\\ \Leftrightarrow\left|x+3\right|=3x-6\)
Với \(x\ge-3\) thì PT trở thành:
\(x+3=3x-6\\ \Leftrightarrow x+3-3x+6=0\\ \Leftrightarrow-2x+9=0\\ \Leftrightarrow x=\dfrac{9}{2}\left(nhận\right)\)
Với \(x< -3\) thì PT trở thành:
\(-x-3=3x-6\\ \Leftrightarrow-x-3-3x+6=0\\ \Leftrightarrow-2x+3=0\\ \Leftrightarrow x=\dfrac{3}{2}\left(loại\right)\)
a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)
TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)
TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)
Vậy x=0,5...
d, đk \(x\ge-1\)
=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)
\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)
a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow\left|3x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b) Ta có: \(\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow\left|2x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)
\(\Leftrightarrow\left|x-3\right|=4-3x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)
ĐKXĐ: ...
\(y\left(y^2-5y+4\right)+y^2=\left(y^2-5y+4\right)\sqrt{x+1}+x+1\)
\(\Leftrightarrow\left(y^2-5y+4\right)\left(y-\sqrt{x+1}\right)+\left(y+\sqrt{x+1}\right)\left(y-\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left(y-\sqrt{x+1}\right)\left[\left(y-2\right)^2+\sqrt{x+1}\right]=0\)
\(\Leftrightarrow y=\sqrt{x+1}\Rightarrow y^2=x+1\)
Thế xuống pt dưới:
\(2\sqrt{x^2-3x+3}+6x-7=\left(x+1\right)\left(x-1\right)^2+x\sqrt{3x-2}\)
\(\Leftrightarrow2\left(\sqrt{x^2-3x+3}-1\right)+x\left(x-\sqrt{3x-2}\right)=x^3-7x+6\)
\(\Leftrightarrow\dfrac{2\left(x^2-3x+2\right)}{\sqrt{x^2-3x+3}+1}+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=\left(x+3\right)\left(x^2-3x+2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\\\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}=x+3\left(1\right)\end{matrix}\right.\)
Xét (1) với \(x\ge\dfrac{3}{2}\):
\(\dfrac{2}{\sqrt{x^2-3x+3}+1}\le8-4\sqrt{3}< 1\)
\(\sqrt{3x-2}\ge0\Rightarrow\dfrac{x}{x+\sqrt{3x-2}}\le1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x^2-3x+3}+1}+\dfrac{x}{x+\sqrt{3x-2}}< 2\\x+3>2\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\) vô nghiệm
\(\sqrt{10\left(x-3\right)}=\sqrt{26}\)
\(\Rightarrow10\left(x-3\right)=26\)
\(\Rightarrow x-3=2.6\)
\(\Rightarrow x=3+2,6=5,6\)
\(\sqrt{3x^2}=x+2\Rightarrow3x^2=x^2+4x+4\)
\(\Rightarrow3x^2-x^2-4x-4=0\)
\(\Rightarrow2x^2-4x-4=0\)
\(\Rightarrow x^2-2x-2=0\)
\(a=1;b=-2;c=-2;b'=-1\)
\(\Delta'=b'^2-ac=\left(-1\right)^2-1.\left(-2\right)=3>0\)
Phương trình có 2 nghiệp phân biệt
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-\left(-1\right)+\sqrt{3}}{1}=1+\sqrt{3}\)
\(x_2=\frac{-b-\sqrt{\Delta'}}{a}=\frac{-\left(-1\right)-\sqrt{3}}{1}=1-\sqrt{3}\)
\(\sqrt{x^2+6x+9}=3x-6\)
\(x^2+6x+9=9x^2-36x+36\)
\(9x^2-x^2-36x-6x+36-9=0\)
\(8x^2-42x+27=0\)
\(a=8;b=-42;c=27;b'=-21\)
\(\Delta'=b'^2-ac=\left(-21\right)^2-8.27=225>0\)
Phương trình có 2 nghiệp phân biệt
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-\left(-21\right)+\sqrt{225}}{8}=\frac{21+15}{8}=\frac{36}{8}=\frac{9}{2}\)
\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-\left(-21\right)-\sqrt{225}}{8}=\frac{21-15}{8}=\frac{6}{8}=\frac{3}{4}\)