cho tam giác vuông với các cạnh góc vuông là 7 và 24. Kẻ đường cao ứng với cạnh góc huyền. Tính diện tích 2 tam giác vuông tạo thành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Độ dài đường cao 6,72 (đvđd)
Diện tích hai tam giác vuông tạo thành là : 6,5856 và 77,4144(đvdt)
Giả sử tam giác ABC vuông tại A với \(AB=24\) ; \(AC=7\)
Kẻ đường cao AD ứng với cạnh huyền
Ta có: \(BC=\sqrt{AB^2+AC^2}=25\)
Áp dụng hệ thức lượng:
\(AC^2=CD.BC\Rightarrow CD=\dfrac{AC^2}{BC}=1,96\)
\(\Rightarrow BD=BC-CD=23,04\)
Áp dụng hệ thức lượng: \(AD^2=BD.CD\Rightarrow AD=\sqrt{BD.CD}=6,72\)
\(S_{ACD}=\dfrac{1}{2}AD.CD=6,5856\)
\(S_{ABD}=\dfrac{1}{2}AD.BD=77,4144\)
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=7^2+24^2=625\)
hay BC=25(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có HA là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=6.72\left(cm\right)\\BH=1.96\left(cm\right)\\CH=23.04\left(cm\right)\end{matrix}\right.\)
Giả sử tam giác ABC có , AB = 5, AC = 7
Theo định lí Pi-ta-go, ta có:
B C 2 = A B 2 + A C 2
⇒ BC =
Theo hệ thức liên hệ giữa đường cao và cạnh trong tam giác vuông, ta có:
AH.BC = AB.AC ⇒ AH =
Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu của nó, ta có:
A B 2 = B H . B C ⇒ BH =
CH = BC – BH =
Bài 1:
Áp dụng đl pytago ta có:
\(\left(y+z\right)^2=3^2+4^2=9+16=25\)
=> y + z = 5
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(3^2=y\left(y+z\right)=5y\)
=>\(y=\frac{3^2}{5}=1,8\)
Có: y + z =5
=>z=5-y=5-1,8=3,2
Áp dụng hên thức liên quan tới đường cao:
\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)
=>\(x=\frac{12}{5}\)
Cho tam giác ABC vuông tại A, AH là đường cao. AB = 24cm, AC = 7cm.
Áp dụng định lý Pytago ta có: \(BC=\sqrt{AC^2+AB^2}=\sqrt{7^2+24^2}=25.\)
Áp dụng hệ thức lượng ta có:
\(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{24.7}{25}=6.72\)
\(AC^2=HC.BC\Rightarrow HC=\frac{AC^2}{BC}=\frac{7^2}{25}=1,96\)
\(\Rightarrow HB=BC-HC=25-1.96=23.04\)
câu 2
Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125
Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5
diện tích 2 tam giác vuông tạo thành chính là diện tích tam giác vuông.
Vậy diện tích tam giác vuông chính là diện tích 2 tam giác vuông tạo thành :
7 . 24 : 2 = 84
Vậy diện tích 2 tam giác vuông tạo thành là 84